Welcome to the Kurt J. Lesker Company.  

Sign In | Register

Current Region: International (Change) | Contact Us |   RSS   Twitter   LinkedIn   YouTube

Close

Please select your country or region to be
directed to the appropriate Lesker site.

Blog


Entries Tagged as Deposition Techniques

KJLC® Awarded a Patent for its Atomic Layer Deposition System and Process

November 28, 2017 |

The Kurt J. Lesker Company® (KJLC®), a global manufacturer of vacuum systems, thin film deposition tools and vacuum components, today announced that the United States Patent and Trademark Office has issued US patent number 9,695,510, 'Atomic Layer Deposition Apparatus and Process', covering the design of an atomic layer deposition system and the process to use that system to deposit highly precise and conformal thin films. This proprietary technology substantially reduces the interaction of various precursor gas molecules with the internal surfaces of the reaction chamber and enables actual focusing of gas streams to more effectively coat the surface of arbitrarily large substrates.

Read More

Tags: Default | Deposition Techniques | INNOVATE | Systems | Vacuum Science



KJLC Featured at the 70th Annual Gaseous Electronics Conference

November 28, 2017 |

On 6 November 2017 our Jason Hrebik and J.R. Gaines delivered presentations at the 70th annual conference on Gaseous Electronics (GEC2017), held at the Doubletree Hotel, Green Tree, PA. Hrebik displayed his expertise through a presentation on the capabilities and benefits of the High Power Impulse Sputtering (HiPIMs) process and provided the audience with an introduction to the new KJLC Impulse™ power supply. The conference featured a group of presentations from industrial companies, including LAM Research, Applied Materials, and Tokyo Electron. Gaines capped off the afternoon session with a review of the practical issues associated with the integration and application of plasmas in Plasma-Enhanced Atomic Layer Deposition (PEALD).

Read More

Tags: Default | Deposition Techniques | Vacuum Science



Fresh Insights on the Flow of Electrons by Direct Observation of Spoke Evolution in Magnetron Sputtering

October 25, 2017 |

In a July 2017 publication, Drs. André Anders and Yuchen Yang provide an enhanced description of the flows and energy of electrons at the face of a magnetron sputter cathode. By combining a unique imaging process and a linear cathode (target) the researchers were able to generate a series of time/space images which shows plasma instabilities driven by the motion of electrons, within the cathode's magnetic field. The images show the effects on plasma flow for both conventional DC magnetron sputtering (dcMS) and also high power impulse magnetron sputtering (HiPIMs). The full paper is available on line at http://aip.scitation.org/doi/10.1063/1.4994192.

Read More

Tags: Default | Deposition Techniques | INNOVATE | Vacuum Science



Novel Deposition System Designs for Thin Film Materials Research

January 25, 2017 |

Next generation vacuum deposition systems must evolve in order to keep pace with the ongoing evolution of thin film materials and devices. Researchers seeking to pursue new areas, such as biomedical devices, 2D materials, specialized magnetics and oxide-based films need new tools to support their work. The frontiers of materials science, particularly at the intersection of biology and thin film deposition, have brought new materials into the vacuum space that were never intended to be there.

Read More

Tags: Default | Deposition Techniques | INNOVATE | Systems | Vacuum Science



System for Sputtering Uniform Optical Coatings on Flat and Curved Surfaces without Masks

November 23, 2016 |

Many optical coating applications require excellent uniformity in both the physical thickness and optical properties of the deposited films. As interest grows in sophisticated coatings on challenging substrate shapes, such as aspheres, high performance eyewear, beveled cell phone screens, camera lenses and a variety of other products, meeting these uniformity requirements becomes more difficult.

Read More

Tags: Default | Deposition Techniques | INNOVATE | Systems | Vacuum Science



Vacuum-Enabled Thin Film Deposition Advances Energy Storage Technologies

July 20, 2016 |

The concept of energy storage in thin films has been around for a long time. One of the early uses of the term 'Thin Film Battery' (TFB) was in a 1976 patent by Exxon [1]. Nearly 20 years later, Bates and his team at Oak Ridge National Laboratory (ORNL) patented the sputter-based, all solid state battery utilizing the electrolyte LiPON [2]. The Bates battery paired LiCoO2 and Li3PO4-xNx (LiPON) to produce a 4 volt secondary cell.

Read More

Tags: Default | Deposition Techniques | INNOVATE | Systems | Vacuum Science



Challenges for Non-Ideal Atomic Layer Deposition Processes & Systems

May 09, 2016 |

ALD has been described as a thin film deposition technology that can keep the semiconductor industry on track per Moore's law (or observation) [1] for a few more years. In its most ideal form, it is a process that enables monolayer, or sub-monolayer growth of certain materials through the sequential exposure of a functionalized substrate to a pair of precursor gases. If dosed correctly the gases attach at specific surface sites and react to create a near perfect film on the order of a few angstroms thick. Presently the U.S. Department of Defense anticipates that the last process node for semiconductor devices (the end of Moore's) is 7 nm and will be achieved by 2020 [2].

Read More

Tags: Default | Deposition Techniques | INNOVATE | Systems | Vacuum Science



High Precision Optical Coatings Deposited by Cylindrical Magnetron Sputtering

February 02, 2016 |

The Kurt J. Lesker Company® (KJLC®) is introducing a novel optical coating system incorporating the Isoflux Inverted Cylindrical Magnetron (ICM) with a unique substrate carrier configuration designed to provide features unavailable in any currently marketed coating system. The combination of the Isoflux ICM with the design of the KJLC precision optical coating system results in a deposition tool capable of providing high quality coatings with unprecedented flexibility of operation, all in a package with an unrivaled simplicity of design and operation.

Read More

Tags: Default | Deposition Techniques | INNOVATE | Systems | Vacuum Science



Combinatorial Magnetron Sputtering Advances with New Tools and New Predictive Techniques

January 19, 2016 |

Combinatorial Magnetron Sputtering (CMS) has distinguished itself as a viable tool for the rapid development of vast libraries of complex materials. Researchers at the Joint Center for Artificial Photosynthesis, California Institute of Technology (Cal Tech) and the Kurt J. Lesker Company® (KJLC®) [1] have recently published work on Combinatorial Magnetron Sputtering (CMS) using a novel robotically controlled thin film deposition cathode tilt and substrate manipulation mechanism. Combinations of metal alloys, mixed metal oxides and nitrides have been demonstrated with the system as a basis for a predictive model developed by Cal Tech to streamline the design of new materials for certain critical applications.

Read More

Tags: Deposition Techniques | INNOVATE | Systems | Vacuum Science



KJLC Is Co-Developing SPION Technology

April 23, 2015 |

A multipurpose source has been constructed that can operate either as a magnetron sputtering cathode, an end-Hall ion source, or both simultaneously depending on the applied voltage. A conical electrode with a major diameter of 6.5 cm and included angle of 90 degrees is combined with a magnetic field that forms a plasma trap above the electrode and also extends beyond the electrode opening. A hot filament generates electrons when operating as an ion source. Using an Al electrode, all three modes of operation have been demonstrated. Sputtering with an applied voltage of -390 V produced an Al film at a specific deposition rate of 4.0 (nm/min)/(W/cm2). By applying +340 V to the electrode at an Ar pressure of 1 mT and filament current of 25 A, a thermally grown SiO2 layer was etched at a rate of 5.2 nm/min. Finally, using a 40 kHz bipolar power supply to apply an alternating positive and negative voltage to the electrode at a total power of 200 W, a reactively sputtered Al2O3 film was deposited arc-free at a specific rate of 1.1 (nm/min)/(W/cm2). The values for n and k (632 nm) for the Al2O3 were 1.67 and 0.001 respectively.

Read More

Tags: Vacuum Science | Deposition Techniques



ISO:9001 The Kurt J. Lesker Company is an ISO:9001 certified company. Copyright ©1996-2017 Kurt J. Lesker Company® All rights reserved.