Close

Please select your country or region to be
directed to the appropriate Lesker site.

Archives


KJLC® Awarded a Patent for its Atomic Layer Deposition System and Process

November 28, 2017 | By KJLC Innovate

The Kurt J. Lesker Company® (KJLC®), a global manufacturer of vacuum systems, thin film deposition tools and vacuum components, today announced that the United States Patent and Trademark Office has issued US patent number 9,695,510, 'Atomic Layer Deposition Apparatus and Process', covering the design of an atomic layer deposition system and the process to use that system to deposit highly precise and conformal thin films. This proprietary technology substantially reduces the interaction of various precursor gas molecules with the internal surfaces of the reaction chamber and enables actual focusing of gas streams to more effectively coat the surface of arbitrarily large substrates.

Read More

Tags:
INNOVATE Systems Vacuum Science Deposition Techniques



Novel Deposition System Designs for Thin Film Materials Research

February 20, 2017 | By KJLC Innovate

Next generation vacuum deposition systems must evolve in order to keep pace with the ongoing evolution of thin film materials and devices. Researchers seeking to pursue new areas, such as biomedical devices, 2D materials, specialized magnetics and oxide-based films need new tools to support their work. The frontiers of materials science, particularly at the intersection of biology and thin film deposition, have brought new materials into the vacuum space that were never intended to be there.

Read More

Tags:
INNOVATE Systems Vacuum Science Deposition Techniques



High Power Impulse Magnetron Sputtering (HIPIMS)

August 30, 2016 | By KJLC Innovate

High Power Pulsed Magnetron Sputtering (HPPMS) or High Power Impulse Magnetron Sputtering (HIPIMS) is a type of magnetron sputtering technique where high power pulses of hundreds of microseconds are applied to the magnetron target at frequencies ranging from a few Hz to several kHz.

Read More

Tags:
INNOVATE Systems Vacuum Science



Kurt J. Lesker Company® Enables World Class Vapour Deposited Perovskite Solar Cell Research

May 13, 2016 | By KJLC Innovate

Solar cells work by using materials that absorb photons from sunlight in a broad spectral range and in turn effectively convert this captured light into free charges that produce electricity. Modern solar cells are based on crystalline Silicon (c-Si) which is a cheap and abundant semiconductor, however the cost to produce electricity using them is relatively high as the efficiency rates of c-Si based cells are relatively low. As a result thin film solar cells have been developed to combat crystalline Silicon's inherent inefficiencies. Technologies such as CIGS, CdTE, amorphous Silicon and OPV have all strived to create solar cells that have high efficiencies coupled with good cell stability and low manufacturing costs.

Read More

Tags:
INNOVATE Systems Vacuum Science



Challenges for Non-Ideal Atomic Layer Deposition Processes & Systems

May 09, 2016 | By KJLC Innovate

ALD has been described as a thin film deposition technology that can keep the semiconductor industry on track per Moore's law (or observation) [1] for a few more years. In its most ideal form, it is a process that enables monolayer, or sub-monolayer growth of certain materials through the sequential exposure of a functionalized substrate to a pair of precursor gases. If dosed correctly the gases attach at specific surface sites and react to create a near perfect film on the order of a few angstroms thick. Presently the U.S. Department of Defense anticipates that the last process node for semiconductor devices (the end of Moore's) is 7 nm and will be achieved by 2020 [2].

Read More

Tags:
INNOVATE Systems Vacuum Science Deposition Techniques



Combinatorial Magnetron Sputtering Advances with New Tools and New Predictive Techniques

January 19, 2016 | By KJLC Innovate

Combinatorial Magnetron Sputtering (CMS) has distinguished itself as a viable tool for the rapid development of vast libraries of complex materials. Researchers at the Joint Center for Artificial Photosynthesis, California Institute of Technology (Cal Tech) and the Kurt J. Lesker Company® (KJLC®) [1] have recently published work on Combinatorial Magnetron Sputtering (CMS) using a novel robotically controlled thin film deposition cathode tilt and substrate manipulation mechanism. Combinations of metal alloys, mixed metal oxides and nitrides have been demonstrated with the system as a basis for a predictive model developed by Cal Tech to streamline the design of new materials for certain critical applications.

Read More

Tags:
INNOVATE Systems Vacuum Science Deposition Techniques



KJLC® Deposition Equipment Enables High Quality Plasmonic Films

July 29, 2015 | By KJLC Innovate

Plasmonics is an important field of research with applications in bio-sensing, photocatalysis, solar cells and high-speed computing, among others. The fundamental technologically enabling features of plasmonics are sub-wavelength confinement of electromagnetic fields and ultra-strong enhancement of those fields. Highly-reflective metals are the predominant material choice for plasmonic devices. More specifically, Gold and Silver have been the most studied materials to date. Aluminum and Copper are burgeoning plasmonic materials which offer CMOS compatibility and low cost. Furthermore, Aluminium opens up the possibility of ultraviolet plasmonic devices which have recently been shown to have applications in bio-sensing and colour filters.

Read More

Tags:
INNOVATE Systems Vacuum Science



Highly Engineered GeOx layers for FinFETs by Plasma Enhanced Atomic Layer Deposition

March 30, 2015 | By KJLC Innovate

Germanium (Ge) is a promising candidate to enhance p-channel metal oxide silicon field transistor (MOSFET) device performance. The successful development of Ge-based field effect devices requires the integration of a high-quality dielectric with equivalent oxide thickness (EOT) less than 1 nanometer that forms an electrically well behaved semiconductor dielectric interface. Although GeOx/Ge has been found promising, the thermodynamic instability as well as the relatively low dielectric constant of GeOx requires an alternative approach. The utilization of an ultrathin Si layer, to modify the semiconductor-dielectric interface from Ge into Si, is a viable approach that has been successfully demonstrated; however, the introduction of a thin Si layer into the gate stack is incompatible with the 3D FinFET manufacturing process flow and also leads to increased EOT. It is, therefore, desirable to develop a multilayer gate-stack by atomic layer deposition (ALD), where an ultrathin GeOx layer can be thermodynamically stabilized and combined with a high-k dielectric film to meet the stringent requirement of low interface trap density and large capacitance density while maintaining a low gate leakage under the constraint of full compatibility with modern 3D FinFET geometries.

Read More

Tags:
INNOVATE Systems Vacuum Science



Integrated System for High-k Metal Gate Development

March 25, 2015 | By KJLC Innovate

Kurt J. Lesker Company and Penn State University have jointly developed a multi-technique process tool enabling high-k metal gate development for high mobility channel transistor technology.

The dual process chamber design allows preparation of pristine semiconductor surfaces and their passivation (UHV-MBE), while the PEALD system provides state-of-the-art high-k deposition capabilities. Both process chambers are equipped with analytical ports for in-situ process monitoring and control by spectroscopic ellipsometry (SE).

Read More

Tags:
INNOVATE Systems Vacuum Science



      Next Entries
Contact Us - Archives