

Providing versatile coatings ideal for corrosion and durability, chemical inertness, and anti-stick properties.

Overview

The Dursan® process deposits a chemically protective barrier of amorphous silicon, oxygen and carbon that is further functionalized to resist adsorption of corrosive, reactive, and otherwise unwanted molecules (patent info at www.silcotek.com/IP). Applied via chemical vapor deposition (CVD), the Dursan® process is required when both a robust and chemically inert surface are critical.

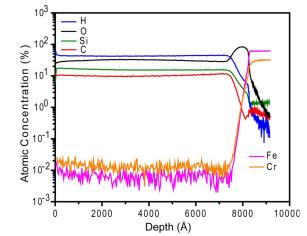
Key Applications and Benefits

- Achieve corrosive performance similar to exotic materials at a fraction of the price
- Increase system durability
- Improve instrument accuracy and response time
- Easy release and cleaning

Chemical Process

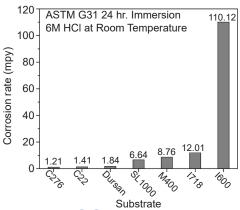
Oil & Gas/Refining

Hydrophobicity

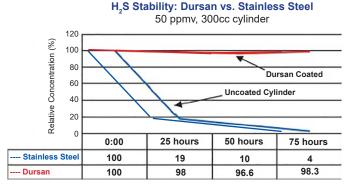

Dursan® Properties

Coating Structure:	Functionalized silica-like coating (a-SiO _x :CH _y)
Deposition Process:	Thermal chemical vapor deposition (not plasma-enhanced)
Maximum Temperature:*	Max for functionalization: 450° C (oxidative) 500° C (inert)
Substrate:	Compatibility: Stainless steel, exotic alloys, ceramics Size: Typical parts up to 80" (203 cm), contact us for larger jobs. Geometry: Any shape, including complex geometries
Typical Thickness:	400 - 1600 nm
Hydrophobicity (contact angle):	≥81°
Allowable pH Exposure:	0 - 14

*Contact technical service #Data.Dursan.12.19.24

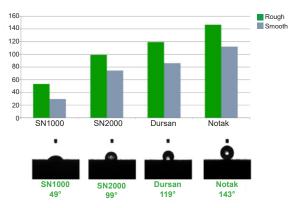

CHEMICAL COMPATIBILITY

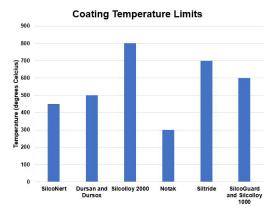
The silica-like structure provided by the Dursan process is a robust and inert barrier suitable for several process environments.


CORROSION RESISTANCE

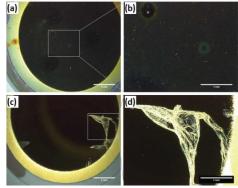
Coating with the Dursan process can provide exotic alloy performance at a fraction of the price.

INERTNESS


Flow paths coated with the Dursan process enable low parts-per-million sensitivity to sulfur compounds.


HYDROPHOBICITY

Coatings produced by the Dursan process are hydrophobic, non-stick, and easy to clean.


TEMPERATURE STABILITY

The Dursan process produces versatile properties that are stable at temperatures well above the limits of fluoropolymers.

DURABILITY

The Dursan process (top row) doubles the wear resistance of 304 stainless steel and creates resistance to cracking and flaking, which plague PTFE (bottom row).

Dursan® (top row) and PTFE (bottom row) after cleaning and sonication.