ACP 28 - ACP 40
Dry compact Multi-stage Roots pump

Translation of the original instructions
Table of contents

1 **About this manual** .. 4
1.1 Validity .. 4
1.1.1 Applicable documents 4
1.2 Conventions ... 4
1.2.1 Safety instructions 4
1.2.2 Pictographs ... 5
1.2.3 Instructions/Abbreviations used 5
1.2.4 Labels ... 5
2 **Safety** .. 7
2.1 Safety precautions 7
2.2 Protective equipment 8
2.3 Proper use .. 9
2.4 Improper use .. 9
3 **Transport and storage** 10
3.1 Transport ... 10
3.2 Storage ... 11
4 **Product description** 12
4.1 Product identification 12
4.1.1 Scope of delivery 12
4.1.2 Differences between the pump versions 12
4.2 Man/machine interfaces 13
5 **Installation** .. 14
5.1 Set-up ... 14
5.2 Connection to the pumping line 14
5.2.1 Connection at pump inlet 15
5.2.2 Connection at pump exhaust 15
5.2.3 Connecting the purge circuit 16
5.3 Leak test ... 16
5.4 Electrical connection 17
5.4.1 Customer electrical installation protection 17
5.4.2 Connection to the mains power supply 18
5.5 Remote connector wiring 18
5.5.1 Wiring of digital inputs 18
5.5.2 Setting of the rotation speed 19
5.5.3 Wiring of the digital outputs 19
5.6 RS-485 serial link wiring 20
5.6.1 Connections 20
5.6.2 Setting ... 21
5.6.3 Command list 22
6 **Operation** ... 23
6.1 Prerequisites to use 23
6.2 Matrix gas/applications 24
6.3 Different control modes 25
6.3.1 Local mode operation 25
6.3.2 Remote mode operation 26
6.3.3 RS-485 serial link operation 27
6.3.4 Operation monitoring 28
6.4 Gas ballast operation 28
6.5 Purge operation 29
6.6 Gas ballast and purge operation on CV version 29
7 **Maintenance** ... 30
7.1 Safety and maintenance information 30
7.1.1 How to contact us 31
7.2 Maintenance frequency 31
7.3 Maintenance on the customer’s site 31
Table of contents

7.4 Standard repair exchange .. 32
7.4.1 Disconnecting the pump from the installation 33
7.4.2 Conditioning the pump for shipping 33

8 Decommissioning ... 34
8.1 Shutting down for longer periods .. 34
8.2 Re-starting ... 34
8.3 Disposal .. 34

9 Malfunctions .. 35
9.1 Trouble at pump start-up ... 35
9.2 The pump runs incorrectly .. 35

10 Service .. 36

11 Accessories ... 37

12 Technical data and dimensions .. 38
12.1 General .. 38
12.2 Technical data ... 38
12.3 Facilities characteristics ... 39
12.3.1 Environmental conditions .. 39
12.3.2 Nitrogen characteristics .. 39
12.3.3 Electrical characteristics .. 39
12.4 Dimensions ... 40
12.5 Weight distribution and seismic brackets 41

ETL Mark .. 43

Declaration of conformity .. 44
1 About this manual

1.1 Validity

This operating manual is for customers of Pfeiffer Vacuum. It describes the functioning of the designated product and provides the most important information for safe use of the unit. The description follows applicable EU guidelines. All information provided in this operating manual refers to the current state of the product's development. The documentation remains valid as long as the customer does not make any changes to the product.

Up-to-date operating instructions can also be downloaded from www.pfeiffer-vacuum.com.

This document is a translation of the original French instructions.

This manual covers products with the following part numbers:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V6SAXXXXXX</td>
<td>ACP 28</td>
<td>Models for standard applications</td>
</tr>
<tr>
<td>V6GAXXXXXX</td>
<td>ACP 28 G</td>
<td>Models for applications with traces of corrosive gases</td>
</tr>
<tr>
<td>V6GVXXXXXX</td>
<td>ACP 28 CV</td>
<td>Models for pumping of condensable vapors</td>
</tr>
<tr>
<td>V8SAXXXXXX</td>
<td>ACP 40</td>
<td>Models for standard applications</td>
</tr>
<tr>
<td>V8GAXXXXXX</td>
<td>ACP 40 G</td>
<td>Models for applications with traces of corrosive gases</td>
</tr>
<tr>
<td>V8GVXXXXXX</td>
<td>ACP 40 CV</td>
<td>Models for pumping of condensable vapors</td>
</tr>
</tbody>
</table>

The part numbers like VX5XXXXXX, VXGXXXXXX concern products that feature the client's specifications: these are documented in another document. Nevertheless, these products are still used for a similar purpose, and it is the operator's responsibility to use this manual in conjunction with the additional document.

1.1.1 Applicable documents

- Declaration of conformity included with this manual
- UL/CSA compliant use (ETL mark)² included with this manual

1.2 Conventions

1.2.1 Safety instructions

The safety instructions in Pfeiffer Vacuum operating instructions are the result of risk evaluations and hazard analyses and are oriented on international certification standards as specified by UL, CSA, ANSI Z-535, SEMI S2, ISO 3864 and DIN 4844. In this document, the following hazard levels and information are considered:

DANGER

Imminent danger
Indicates an imminent hazardous situation that will result in death or serious injury.

WARNING

Possibly imminent danger
Indicates an imminent hazardous situation that can result in death or serious injury.

CAUTION

Possibly imminent danger
Indicates an imminent hazardous situation that can result in minor or moderate injury.
1.2.2 Pictographs

Prohibition of an action or activity in connection with a source of danger, the disregarding of which may result in serious accidents

Warning of a displayed source of danger in connection with operation of the unit or equipment

Command to perform an action or task associated with a source of danger, the disregarding of which may result in serious accidents

Important information about the product or this document

1.2.3 Instructions/Abbreviations used

repr or _repr_ Work instruction: you must perform an operation here.

1.2.4 Labels

<table>
<thead>
<tr>
<th>I/O</th>
<th>Pump Start/Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>INLET</td>
<td>Pump inlet connection</td>
</tr>
<tr>
<td>PUMP EXHAUST</td>
<td>Pump exhaust connection</td>
</tr>
</tbody>
</table>

WARNING HOT SURFACE
Contact with pump bodies may cause burn. Switch off and wait until pumps cooled before servicing.

It states that protective gloves should be used before performing any intervention.

WARNING MOVING PARTS PRESENT
Moving parts can crush and cut. Keep hands or feet away from moving parts.

The user must keep all body parts away from moving parts.

WARNING HEAVY OBJECT
Can cause muscle strain or back injury. Use lifting aids and proper lifting techniques when removing or replacing.

But always through appropriate handling devices.

WARNING HAZARDOUS VOLTAGE
Switch off the pump and disconnect the main power cable before opening the power box cover.

This label indicates that due to its heavy weight, the product should not be handled manually.

This label indicates that some of the internal parts are energized and could cause electrical shocks in case of contact.

It advises to disconnect the pump before any intervention or to properly lock-out and tag-out the equipment breaker before any intervention on the pump.
This label indicates the voltage of the equipment in which the pump is to be connected.

This label indicates the location of the holes for seismic bracket installation.

This label indicates that the power supply must be switched off before connecting and/or disconnecting the pump. Any person responsible for installation or operation of the product must first refer to the operating manual.

This label warns the user against potential risks associated with the use of this product. Any person responsible for installation or operation of the product must first refer to the operating manual.

The installer must glue the following labels to the most appropriate and visible place on the pump to warn the operator about potential hazards:

1. **Weight Label**
2. **Heavy object label**
3. **Hot surface label**
4. **Hazardous voltage label**
5. **Presence of moving part label**
6. **Seismic down label**
7. **Mains voltage Label**
2 Safety

2.1 Safety precautions

Obligation to inform
Any person responsible for installing, using or maintaining the product must first read the security instructions in this operating manual and comply with them.

⇒ It is the operating customer’s responsibility to protect all operators against the dangers associated with the product, with the media pumped and with the entire installation.

Installation and use of the accessories
The products can be fitted with special accessories. The installation, use and refurbishment of the connected accessories are described in detail in the respective manuals.

⇒ Only use original accessories.
⇒ Accessory part numbers: see Accessories.

WARNING
Hazard associated with non-compliant electrical installation
Safe operation after installation is the operator’s responsibility.

⇒ Connect the product to an installation that is compliant with local safety standards.
⇒ Do not carry out any alterations or modifications to the product on your own initiative.
⇒ For specific questions, contact your service center.

WARNING
Electric shock hazard in case of contact
When the product's mains switch is set at O, some internal components still have an electrical charge.

⇒ Make sure that the mains connection is always visible and accessible so that it can be unplugged at any time.
⇒ Disconnect the power cable from all power sources before starting any work on the product.

WARNING
Danger due to lack of lock out/tag out (LO/TO) electrical device.
In order to properly secure the pump for installation and/or maintenance, it is required to lock out/tag out the pump properly in accordance with OSHA requirement 29 CFR.1910.147.

WARNING
Other located hazardous energies
Electrical circuit and other pressurized circuits as nitrogen are potential hazards:

⇒ Always lock out these energy sources before working on the product.
Safety

The potential risks with an air cooled, dry multi-stage Roots pump involve electricity, the chemical processes, hot surfaces, the pressurized nitrogen device.

- Only qualified personnel trained in safety rules (EMC, electrical safety, chemical pollution) may carry out the installation and maintenance described in this manual. Our service centers can provide the necessary training.
- Do not remove the blanking plates sealing the inlet and exhaust ports if the product is not connected to the pumping line.
- Do not operate the product unless the inlet and exhaust are connected to a vacuum and exhaust pumping line.
- Do not expose any part of the human body to the vacuum.
- Comply with all safety and risk prevention instructions in accordance with local safety standards.
- Regularly check compliance with all precautionary measures.
- Do not turn on the product if the covers are not in place.

2.2 Protective equipment

In some situations, personal protective equipment must be worn when handling the vacuum pump and its components. The owner must provide operators with the necessary equipment. This equipment must be checked regularly and used in accordance with the supplier's recommendations.

DANGER

Health risk relating to contact with toxic materials

The vacuum pump, pumping line components, and operating media may be contaminated with toxic, corrosive, reactive, or radioactive materials, depending on the process.

- Wear appropriated safety equipment when pump is disconnected for maintenance, or re-installed, and also for oil filling and draining.

WARNING

Risk of injury due to hot surfaces

For the operator’s safety, the products are designed to avoid thermal risk. However, specific operating conditions may exist that require extra caution from users due to the high temperatures (external surfaces > 70°C on the exhaust pipe).

- Let the part cool before working on the product.
- If necessary wear protective gloves according to directive EN 420.
2.3 Proper use

- The vacuum pump may only be used to generate a vacuum while pumping gases.
- The product may be used in an industrial environment.
- The product may be used in a laboratory environment.
- The G version pump is compatible with traces of corrosive gases.

2.4 Improper use

Improper use will cause all claims for liability and warranties to be forfeited. Improper use is defined as usage for purposes deviating from those mentioned above, especially:

- pumping of flammable and explosive mixtures
- pumping of corrosive gases (exception: pumps in G version)
- pumping of liquids
- pumping of dusts
- use of the vacuum pump to generate pressure
- operation in potentially explosive areas
- use of accessories or spare parts, which are not named in this manual

The product is not designed to carry people or loads and is not for use as a seat, step-ladder or any other similar purpose.
3 Transport and storage

Upon delivery, check that the product has not been damaged during transport. If the product is damaged, contact the carrier and notify the manufacturer. In all situations we recommend:

- Keeping the product in its original packaging so it stays as clean as it was when dispatched by us. Only unpack the product once it has arrived at the location where it will be used.
- Keeping the packaging (recyclable materials) in case the product needs to be transported or stored.
- Keeping the blanking plates in place on the inlet, exhaust and purge ports while the product is not connected to the pumping line.

3.1 Transport

WARNING

Risk of injury associated with heavy loads

Given the weight of the product, it should be removed from its packaging only by personnel qualified and trained in handling heavy materials.

- Use the lifting rings and devices provided with the product.
- The manufacturer cannot be held liable for the consequences of using lifting devices other than those provided.

WARNING

Risk of tilting

Even though compliance with EEC safety rules is guaranteed, all necessary precautions should be taken when moving, installing and operating the product.

- Do not place the product on an inclined plane.
- Place it on a flat, hard floor.
- Do not push the product sideways.

To lift the product, use the lifting rings installed on the product:

- Use a lifting device suitable for the product's weight.
- Use a lifting sling with two arms with the following characteristics:
 - length of each arm > 605 mm
 - load per arm > 16 kg
- With the sling, lift the pump.

A wheel kit is available as accessory: fitted over the frame, it facilitates the displacement of the pump over short distances (see 11) and (see 12.4).
3.2 Storage

Storage of a new pump

If the new pump is going to be put into storage:

- Keep the pump wrapped in its protective film.
- It is absolutely necessary to leave the inlet, the exhaust and purge blanking plates in place.
- Store the pump according to storage temperatures (see 12.3.1).
- Store the pump in a clean and dry area, for a maximum period of 1 year.

For longer storage, we recommend operating the pump regularly at least once a year: factors such as temperature, degree of humidity, salt air, ... may cause the deterioration of the pump components. Proceed as follows:

- Let the pump to run:
 - for 30 minutes with gas ballast opened or by injecting a dry inert gas into the pump (G version),
 - then, for 30 minutes at ultimate pressure (inlet, gas ballast and purge ports closed).
- Stop the pump.
- Seal the pump inlet, exhaust and purge ports with included accessories.
- Repeat this at least once a year.

For a storage period of over 4 years, the pump must be revised before any start up. Return it to a service center according to the product return Service procedure (see 10).

Storage after use

- Stop the pump according to pump shut-down procedure (see 6.3.1), (see 6.3.2) or (see 6.3.3).
- Disconnect the pump from the installation (see 7.4.1).
- Seal the pump inlet, exhaust and purge ports with included accessories.
- Store the pump in a clean, dry, non-polluted area for a maximum of 6 months according to the storage temperatures (see 12.3.1).

For longer storage, we recommend operating the pump every 6 months. Proceed as follows:

- Let the pump to run:
 - for 30 minutes with gas ballast opened or by injecting a dry inert gas into the pump (G version),
 - then, for 30 minutes at ultimate pressure (inlet, gas ballast and purge ports closed).
- Stop the pump.
- Seal the pump inlet, exhaust and purge ports with included accessories.
- Repeat this every 6 months.

For a storage period of over 2 years, the pump must be revised before any start up. Return it to a service center according to the product return Service procedure (see 10).
4 Product description

4.1 Product identification

To correctly identify the product when communicating with Pfeiffer Vacuum, always have the information from the rating plate available.

![Fig. 1: Product identification on the rating plate](image)

4.1.1 Scope of delivery

- 1 vacuum pump
- 1 remote cover plug for remote connector (connected to the pump)
- 1 operating instructions
- 1 sheet of multilingual labels

and, depending on the ordering guide, the following components are present:

- 1 main power cable

4.1.2 Differences between the pump versions

The multi-stage Roots pump technology of the ACP series meets the requirements of applications where clean and dry vacuum is needed.

Standard version

The SD version is designed for applications that require pumping of clean (dust-free) and non-corrosive gases. Standard pumps are equipped with a gas ballast device to improve pumping of light gases and avoid vapor condensation inside the pump.

G version

The G version pump is compatible with traces of corrosive gases. Three purge gas jets protect low and high pressure bearings and dilute trace amounts of corrosive gases.

CV version

The CV version is specially designed to avoid vapor condensation inside the pumping module with:

- A high gas ballast flow to warm up the pump and dilute condensable gases.
- An external drainable silencer to remove liquid from the lowest point of the exhaust stage.
- A gas purge to protect lip seals and ball bearings from condensable vapors.

CV versions extend the pure water vapor pumping capacity.

Please contact Pfeiffer Vacuum to obtain more detailed information according to the applications.
4.2 Man/machine interfaces

Fig. 2: ACP 28 - ACP 40 with single-phase frequency converter

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gas ballast (SD version)</td>
</tr>
<tr>
<td>2</td>
<td>Hoisting ring</td>
</tr>
<tr>
<td>3</td>
<td>Remote connector and RS-485 connector</td>
</tr>
<tr>
<td>4</td>
<td>Hour meter</td>
</tr>
<tr>
<td>5</td>
<td>Inert gas purge connection (G version)</td>
</tr>
</tbody>
</table>

Fig. 3: ACP 28 CV and ACP 40 CV with single-phase frequency converter

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gas ballast</td>
</tr>
<tr>
<td>2</td>
<td>Hoisting ring</td>
</tr>
<tr>
<td>3</td>
<td>Remote connector and RS-485 connector</td>
</tr>
<tr>
<td>4</td>
<td>Hour meter</td>
</tr>
<tr>
<td>5</td>
<td>External drainable silencer</td>
</tr>
</tbody>
</table>
5 Installation

5.1 Set-up

The pump must be operated in the horizontal position in support on its feet, with the pumping axis vertical and the inlet opening upwards.

- Determine where the pump will be placed.
- Use the handling devices to position the pump in the desired location, lift the pump using hoisting rings (see 3.1).
- Remove the hoisting rings, if necessary.
- Install the pump so that the I/O mains switch is accessible by the operator.

Ventilation

To guarantee the characteristics and performances of the pump within the boundaries of the operating conditions:

- Check that the air circulation grids are not blocked.
- Take away the pump of the fixed walls, at least the value indicated on the diagram below.

5.2 Connection to the pumping line

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of crushing or cutting related to the rotating parts</td>
</tr>
<tr>
<td>Do not expose any part of the human body to the vacuum. The product is supplied with the inlet and exhaust sealed.</td>
</tr>
<tr>
<td>Remove these blanking plates when you are ready to connect the product to your vacuum system.</td>
</tr>
<tr>
<td>Do not operate the product unless the inlet and exhaust are connected to a vacuum and exhaust pumping line.</td>
</tr>
</tbody>
</table>

- Use accessories on the inlet and exhaust lines whose materials and sealing properties are compatible with gases being used.
- Provide in the pumping line, accessories to isolate the pump from the vacuum and exhaust line, to make the maintenance easier (inlet and exhaust isolation valves, purges,...).
- Remove the blanking plates blocking the inlet and exhaust ports.
- Keep the blanking plates, screws and washers for reuse when transporting the pump.
- Ensure that no screws, washers or other objects are dropped into the pump inlet.
- Fit flexible flanged bellows in the pumping line to reduce the transmission of vibrations.
The O-rings located under the blanking plates are compatible with standard applications. Other types of connection accessories are available in the product catalogue. The inlet and exhaust connections must not cause stress that could lead to leaks in the pumping line.

5.2.1 Connection at pump inlet

NOTICE

Limit of operation

⇒ Make sure that the parts or chambers connected to the inlet of our products withstand a negative pressure of $1 \cdot 10^3 \text{ hPa}$ in relation to atmospheric pressure.

NOTICE

When the pump stops, the pressure rises at the inlet. This rise depends on the inlet volume.

⇒ If necessary, install an isolation valve on the inlet which closes when the pump stops.

The product is not designed to withstand loads on its inlet flange which may compromise stability.

⇒ Mechanically attach the vacuum chamber separately from the pump.

It may be necessary to install a filter on the inlet (particulate filter or (see 11) condensables filter).

To improve pumping speed, the pumping line must be as short as possible and its internal diameter must not be less than the pump inlet flange.

⇒ Use only dry parts and clean, grease-free, dust-free pipelines.

5.2.2 Connection at pump exhaust

NOTICE

Limit of operation

⇒ Ensure that all components in the exhaust pipeline have maximum pressure rating which is greater than the highest pressure that can be generated in your system.

Pump exhaust is equipped with an anti-noise membrane. In case of connection to an exhaust pipe:

⇒ Remove the anti-noise membrane (1) out of the exhaust port.

CV version

Pump exhaust is equipped with an external drainable silencer to collect condensable gases.

⇒ Connect silencer exhaust to an exhaust pipe.

⇒ Install a draining device on the port designed for this purpose (1/8 Gas connection).
5.2.3 Connecting the purge circuit

The gas purge consists of injecting an inert gas into the pump.

In this manual, the inert gas will be called 'nitrogen', as it is the most commonly used gas. For more information about the type of purge gas, contact your service center Pfeiffer Vacuum.

DANGER

Health risk in case of contact with toxic substances
Exhaust of corrosive, reactive, flammable, pyrophoric or oxidizing process gases may result in severe injury or death.

- Always connect the pump exhaust to an exhaust extraction system.

DANGER

Risk of explosion
If pyrophoric materials above the LEL (lower explosive limit) are sent to the pump, the nitrogen supply must make it possible to dilute this concentration.

- Ensure there is a sufficient flow of nitrogen to lower the concentration below the LEL.
- Provide in addition an interlock to ensure that gas flow towards the pump is stopped when nitrogen is lost.

NOTICE

Risk of nitrogen supply failure
If loss of purge flow creates a significant risk for the process:

- Control the nitrogen supply using an external system able to take over in case of failure.

G and CV versions

A gas purge circuit protects the low and high pressure bearings and dilutes trace amounts of corrosive gases.

- Connect the inert gas pipe to the 1/4 BSPT connector provided for this purpose (flexible or rigid pipe supplied by the customer).
- Install as close as possible from pump gas port, an isolation valve on the inert gas pipe, to allow pump performance recovering when the gas supply is not used (see 12.2).
- Inject inert gas purge with maximum relative pressure of 300 hPa (see 12.2).

A filtered dry nitrogen supply with the characteristics defined is required for optimum performance (see 12.3.2).

5.3 Leak test

WARNING

Leak-tightness of the equipment
It is the user's responsibility to ensure this level of leak tightness is maintained, especially when dangerous gases are pumped. The operator must maintain this level of tightness, particularly when pumping dangerous gases. Proceed as follows:

- Perform a leak test on the entire pumping line after installation.
- Carry out regular checks to ensure that there are no traces of the gases pumped in the surrounding environment and that no air is entering the pumping line while the pump is running.

For more information concerning leak tests, please contact your service center.
5.4 Electrical connection

WARNING

Electric shock hazard in case of contact

When the product's mains switch is set at O, some internal components still have an electrical charge.

- Make sure that the mains connection is always visible and accessible so that it can be unplugged at any time.
- Disconnect the power cable from all power sources before starting any work on the product.

WARNING

Risk of electromagnetic disturbance

The product's EMC behavior is guaranteed only if the relevant EMC standards are followed during installation.

- Use shielded cables and connections for the interfaces in interference-prone environments.

WARNING

Hazard associated with non-compliant electrical installation

Safe operation after installation is the operator’s responsibility.

- Connect the product to an installation that is compliant with local safety standards.
- Do not carry out any alterations or modifications to the product on your own initiative.
- For specific questions, contact your service center.

Electrical safety

The pump is equipped with an I/O mains switch that isolates the product from power line when it is on O position.

The pump is equipped with a frequency converter in compliance with EC standards that allows pump running in high and low voltages (see 5.4.1). The frequency converter is protected against short-circuits from power line. Once this safety activated, power is switched off and the pump is put in a safe condition. To restart the pump, you must:

- switch power off, mains switch O to I position,
- delete the origin of the fault, then,
- wait for about 15 seconds,
- then, switch power on O, to I position.

The pump is equipped with thermal sensors that prevent pump start-up at certain temperatures (see 6.1).

5.4.1 Customer electrical installation protection

The pump is connected to the mains with the delivered mains power cable. The earth connection (frequency converter, cover, pump) is made via the power cable connected to a compliant electrical installation.

When the mains power cable is provided by the customer:

- Use an EEC cable in compliance with IEC 60227 and IEC 60245 standards with the following characteristics:
 - heatproof (because it can come into contact with hot surfaces),
 - with conducting wire section suitable with the voltage (see 12.3.3),
 - and which one of the wire ensures grounding of the pump.
Installation protection with circuit breaker
The user must supply the pump from facilities equipped with main circuit breaker, curve D (IEC 60947-2), in accordance with local regulations and with at least a 10 kA short circuit cut-off capacity. This protection device should be in close proximity to the pump (no further than 7 m) within line of sight of the pump.

This circuit breaker supply and wiring is a customer’s responsibility: main circuit breaker rating (see 12.3.3).

WARNING
Absence of emergency off
This pump is not equipped with an emergency off device EMO or a lock-out device. It is designed to be integrated with the host tool equipment equipped with an emergency device. This EMO device must de-energize the pump when it is activated.

NOTICE
Operation in local mode
There is no device to warn that the pump is operating in local mode.

Provide a device to warn about **local mode operation** when the pump is not integrated with equipment/host tool.

5.4.2 Connection to the mains power supply

Connect the mains power cable to the connector.

5.5 Remote connector wiring

Connection made via the Remote connector (Male 15-pin D-Sub) (see 4.2), allows:

- remote control of following functions: start, stop of the pump,
- setting of pump rotational speed (see 5.5.2).

The remote control connector wiring is the customer’s responsibility.

5.5.1 Wiring of digital inputs

Fig. 4: Digital input wiring

There are dry contact inputs. Do not add more connections than those provided: S1, S3, S4 and S5.

<table>
<thead>
<tr>
<th>Contact</th>
<th>Function</th>
<th>Contact Status</th>
</tr>
</thead>
</table>
| S1 (7-8) | Pump Start/Stop | Contact open, S1=0 : pump stopped
Contact closed, S1 =1 : pump start-up |
| S3 (9-10) | Rotational speed setting | Depending on the contact status (open or closed), the rotation speed changes. |
| S4 (11-12) | | |
| S5 (13-14) | | |
5.5.2 Setting of the rotation speed

<table>
<thead>
<tr>
<th>Contact S3</th>
<th>Contact S4</th>
<th>Contact S5</th>
<th>Rotation speed Hz</th>
<th>min⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3 = 1</td>
<td>S4 = 1</td>
<td>S5 = 0</td>
<td>40</td>
<td>2500</td>
</tr>
<tr>
<td>S3 = 1</td>
<td>S4 = 0</td>
<td>S5 = 0</td>
<td>50</td>
<td>3000</td>
</tr>
<tr>
<td>S3 = 0</td>
<td>S4 = 1</td>
<td>S5 = 0</td>
<td>65</td>
<td>3900</td>
</tr>
<tr>
<td>S3 = 0</td>
<td>S4 = 0</td>
<td>S5 = 0</td>
<td>80*</td>
<td>4800*</td>
</tr>
</tbody>
</table>

* Corresponds to the speed set on the cover plug delivered with the pump.

NOTICE

Rotation speed

Pump performances are guaranteed for a nominal speed of 80 Hz. Changing the rotation speed affects the pumping speed and the ultimate pressure of the pump. In low speed, it is the customer's responsibility to find the correct settings according to the pump and the process.

→ For the safety of the pump, do not exceed the maximum frequency.

→ Do not run the pump continuously at speeds ≤ 60 Hz.

5.5.3 Wiring of the digital outputs

<table>
<thead>
<tr>
<th>Contact S2 (5-6)</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of the rotation speed</td>
<td>Contact closed: nominal speed reached</td>
</tr>
</tbody>
</table>

NOTICE

S2 output wiring precautions

→ Do not connect a relay between contacts 5 and 6: the relay coil could create an induced current which may damage the frequency converter.

→ Do not apply to S2 output a current greater than 35 mA: a greater current would damage the frequency converter.

→ Use the open collector output S2 according to the wiring below.

The values of Vcc and R must be calculated so that the current I is less than 35 mA. When the setpoint speed is reached, the transistor becomes conductive (‘on-state’) and Vout = 0 V. As long as the setpoint speed is not reached, the transistor is blocked (‘off-state’) and Vout = Vcc. This assembly does not make pass of power, add an amplifier stage to control the power. The S2 output can be used as a relay (dry contact) using the accessory socket interface (see 11).
5.6 RS-485 serial link wiring

<table>
<thead>
<tr>
<th>Description</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial link</td>
<td>RS-485</td>
</tr>
<tr>
<td>Transmission speed</td>
<td>9600 bauds</td>
</tr>
<tr>
<td>Data word length</td>
<td>8 bits</td>
</tr>
<tr>
<td>Parity</td>
<td>none (no parity)</td>
</tr>
<tr>
<td>Stop bit</td>
<td>1</td>
</tr>
<tr>
<td>Echo</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>RS-485 : V-</td>
</tr>
<tr>
<td>2</td>
<td>RS-485 : V+</td>
</tr>
<tr>
<td>1</td>
<td>+5 VDC -10 mA max (only for RS-485)</td>
</tr>
</tbody>
</table>

WARNING

Risk of electromagnetic disturbance
The product’s EMC behavior is guaranteed only if the relevant EMC standards are followed during installation.

➜ Use shielded cables and connections for the interfaces in interference-prone environments.

WARNING

Electric shock hazard in case of contact
When the product’s mains switch is set at O, some internal components still have an electrical charge.

➜ Make sure that the mains connection is always visible and accessible so that it can be unplugged at any time.

➜ Disconnect the power cable from all power sources before starting any work on the product.

5.6.1 Connections

The male D-Sub 15 pin connector (see 4.2) is used to control and monitor the pump using a computer. It allows also the installation of several pumps in a network. The default serial link setting can be modified from the connected computer, according to the command list (see 5.6.3).

The wiring of the product at the end of line Pn* and the wiring of a single product on the network is specific (see figure below).

RS-485 connection

A computer manages several pumps (P1, P2, Pn, ...) using an RS-485 serial link via RS-485 connector. This parallel wiring allows communication between the pumps even if a pump is disconnected.

The wiring of the product at the end of line Pn* and the wiring of a single product on the network is specific (see figure below).
5.6.2 Setting

When the wiring is done, to allow pump control via serial link, proceed as follows:

→ Position the mains switch to I position.
→ Send an order via the serial link: this order has no priority on remote control mode via dry contacts (see 5.5.1).

The control commands

<table>
<thead>
<tr>
<th>Header character</th>
<th>Pump address</th>
<th>Order</th>
<th>Parameter</th>
<th>End character</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>ADR</td>
<td>ODR</td>
<td>XXXX</td>
<td><CR></td>
</tr>
</tbody>
</table>

The responses

<table>
<thead>
<tr>
<th>Header character</th>
<th>Pump address</th>
<th>Order</th>
<th>Parameter</th>
<th>End character</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>ADR</td>
<td>yyyyxxabc</td>
<td></td>
<td><CR></td>
</tr>
</tbody>
</table>

Interpretation of the responses

OK OK or specific response to the order.
ERR0 Setting fault.
ERR1 Context fault.
ERR2 Parameter fault.
ERR3 Order fault.

Example of dialog

Order: #005ACPON<CR>
Response: #005,OK<CR>
5.6.3 Command list

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter</th>
<th>Description</th>
<th>Functions</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADR</td>
<td>xxx</td>
<td>Number given to the pump in the serial link</td>
<td>Can be used only when the pump is stopped.</td>
<td>000</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>adr = pump address before change</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>aaaa = new pump address</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When the address of the product is unknown, it is possible to recover pump address only if this pump is connected in the link. For this, send the order:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>#???ADR<CR></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>??? chain of three ASCII characters.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDN</td>
<td>none</td>
<td>Identification of the connected product</td>
<td>Example: #adr,ACP 28- VB.05<CR></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Returns the type of pump connected with the computer (12345), the software of the pump (V) followed by the software release (zz).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSP</td>
<td>none</td>
<td>Switches from set point speed to the nominal speed</td>
<td>Example: #adrNSP<CR></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nominal speed = 80 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM</td>
<td>nnnn*</td>
<td>Set point speed setting</td>
<td>Example: #adrRPMnnnn<CR></td>
<td>35</td>
<td>80 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Set point speed can be set in steps of 10 min⁻¹: minimum speed : 35 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACP 26, maximum speed : 80 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Before changing the set point speed with RPM order, it is mandatory to send the SBY order.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBY</td>
<td>none</td>
<td>Switches from stand-by speed to the default setting</td>
<td>Stand-by speed is reset at 35 Hz.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACP</td>
<td>ON or OFF</td>
<td>Start/stop the pump</td>
<td>The pump rotation starts with ACPON, pump stops with ACPOFF.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Note: Only speeds recommended in the rotational speed setting table are allowed (see 5.5.2).

STA: Pump status

<table>
<thead>
<tr>
<th>xxxxxxx: status bits</th>
<th>Bit</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

yyyyঃ: fault bits

<table>
<thead>
<tr>
<th>yyyyঃ: fault bits</th>
<th>Bit</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

zzzzz: alert bits

<table>
<thead>
<tr>
<th>zzzzz: alert bits</th>
<th>Bit</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
6 Operation

6.1 Prerequisites to use

WARNING

Risk associated with process gases

The user and/or integrator of the product is/are fully responsible for the operational safety conditions of the equipment. The manufacturer has no control over the types of gases this pump is exposed to. Frequently process gases are toxic, flammable, corrosive, explosive and/or otherwise reactive. It is the user and/or the integrator's responsibility to follow the necessary safety requirements. Toxic gases can cause serious injury or death. Operators and users must:

- Take the appropriate safety recommendations to prevent injury. Consult the responsible department for instructions and safety information.
- **Hazardous gases from the pump can cause serious injury or death. Regulations require to connect the pump’s exhaust to a facility hazardous gas exhaust system** which incorporates appropriate filters, scrubbers, etc. This system must meet all air and water regulations.
- Check that the pump is correctly connected to the equipment (see *Installation*). Contact the service center for further information.

WARNING

Electric shock hazard

Some components have capacitors charged to over 60VDC. When power is switched off, they maintain this charge for some time. Residual voltages from the filter capacitors can cause electric shocks all the way back to the mains plug.

- Wait 5 minutes after power-off before commencing any work on the product.

DANGER

Risk due to auto-restart

When the pump has been stopped following a temperature rise, the pump automatically restarts when the ambient temperature returns to within the permissible range.

- Provide a device integrated with the host tool equipment to warn or avoid this auto-restart.
- Take all the measures required to prevent risks resulting from this type of operation.

WARNING

Increased noise emission

At the beginning of the chamber’s pumping and at high pressure operation, the pump noise level may temporarily exceed 70 dB (A).

- Connect the exhaust port to a chimney or to an exhaust pipe.
- Install an external silencer on the pump exhaust (see *Accessories* chapter).
- Wear hearing protection.

NOTICE

Operating fluids

The pump is delivered with filled oil charge. The oil safety data sheet concerning the lubricant (MSDS) are available on our website.

- Do not modify the lubricant level.
- Do not drain the pump: the draining will be done during pump overhaul in our repair service center.
Before each time the pump is switched on:

- Check that the pump inlet is connected to the pumping line.
- Check that exhaust pipe line is not clogged and that all the valves in the exhaust system are open.
- Connect the pump to the mains supply.
- Check that the inlet pressure is not higher than atmospheric pressure. A too high pressure can damage the product.
- Check that the ambient temperature is well within the permitted operating range (see 12.3.1).
- Check the exhaust line during pumping to prevent the risks related to excess over-pressure.

6.2 Matrix gas/applications

You are advised to use the appropriate pump version according to the applications and the nature of the gases pumped and apply the usual precautions to guarantee the reliability and safety of the procedure.

- Ensure that the gases pumped are compatible with the various materials (see 8.3).

<table>
<thead>
<tr>
<th>Type of gas or vapor pumped</th>
<th>Recommended equipment</th>
<th>Actions/Monitoring to be done</th>
<th>Minimum configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral or inert gas</td>
<td>Air, nitrogen, CO2, noble gas or permanently non-reactive gas</td>
<td>None</td>
<td>![Gas ballast open](ACP, ACPG, ACPCV)</td>
</tr>
<tr>
<td>Gas containing condensable vapor</td>
<td>Cyclic pumping of volume</td>
<td>Avoid condensation which reduces the performance and reliability of the pump</td>
<td>![See use of gas ballast for purging (see 6.4).](ACP, ACPG, ACPCV)</td>
</tr>
<tr>
<td>Reactive and/or corrosive gas excluding halogens (F₂, CL₂, Fr₂, I₂)</td>
<td>Pumping reactive gases: Oxidising, Base, Acid</td>
<td>Dilute the corrosive gas to reduce its activity. Avoid the presence of humidity which increases the reactivity of acids and bases.</td>
<td>![Dilute the gas to lower its concentration and avoid any condensation.](ACP, ACPG, ACPCV)</td>
</tr>
</tbody>
</table>
6.3 Different control modes

3 control modes are available:

LOCAL
The pump is controlled with I/O mains switch. The pump is running as a stand-alone part of the equipment on which it has been integrated.

REMOTE
The pump is remote controlled. The pump rotational speed is set by the opening and closing dry contacts on the remote control connector (see 6.3.2).

SERIAL LINK
The pump is remote-controlled by the commands transmitted via the serial link RS-485 (see 6.3.3).

6.3.1 Local mode operation

In local mode, the *pump can run only if the cover plug* is fitted on the remote control connector. This cover plug is delivered with the pump.

Pump start-up

- Position the mains switch 📦 to I position: pump starts automatically.
- An hour counter displays the pump model and running time in hours.
- **G version**: allow the purge to run (*see 6.5*).
- **CV version**: allow the purge and gas ballast to run (*see 6.6*).

Pump shut-down

- Isolate the pump in the pumping line (isolation valve at pump inlet, closed) and let it to run for 1 hour with gas ballast or purge open (*see 6.4*).
- Position the mains switch 📦 to O position, and/or activate the mains circuit breaker: pump stops.

Prolonged stop

If the pump has to be stopped for a prolonged period, apply the *Decommissioning* procedure (*see 8*).
Restart

DANGER

Risk due to auto-start

In local mode, the pump starts automatically when the mains switch is switch to I.

- Install an interlock safety device in the equipment/tool to warn the operator or to avoid this type of operation.
- Take all the measures required to prevent risks resulting from this type of operation.

Restart after emergency stop (from the equipment)

The equipment/tool emergency off manages the pump stop. To restart the pump after an emergency stop, it is necessary to:

- fix the problem,
- unlock the emergency button from the equipment/tool: the pump restarts automatically.

Restart after power failure

After a power failure, the pumps restarts automatically when the power comes back.

6.3.2 Remote mode operation

Pump start-up

- Wire and connect the remote connector located at the rear of the pump (see 5.5).
- Position the mains switch to I position: the pump is powered.
- Send a 'Start' pump order via S1 contact:
 - the pump starts up and runs at the speed set on the contacts of the remote connector.

 - **G version**: allow the purge to run (see 6.5).
 - **CV version**: allow the purge and gas ballast to run (see 6.6).

Note: when S1 is closed, sending of ACPON or ACPOFF via the serial link doesn't disturb the operation ('context error' response).

Pump shut-down

- Isolate the pump in the pumping line (isolation valve at pump inlet, closed) and let it to run for 1 hour with gas ballast or purge open (see 6.4).
- Send a 'Stop' pump order via S1: the pump stops.

Switching off

- Position the mains switch to O position.

Prolonged stop

If the pump has to be stopped for a prolonged period, apply the Decommissioning procedure (see 8).

NOTICE

Rotation speed

Pump performances are guaranteed for a nominal speed of 80 Hz. Changing the rotation speed affects the pumping speed and the ultimate pressure of the pump. In low speed, it is the customer's responsibility to find the correct settings according to the pump and the process.

- For the safety of the pump, do not exceed the maximum frequency.
- Do not run the pump continuously at speeds ≤ 60 Hz.
Restart

DANGER

Risk due to auto-start
In local mode, the pump starts automatically when the mains switch is switch to I.
- Install an interlock safety device in the equipment/tool to warn the operator or to avoid this type of operation.
- Take all the measures required to prevent risks resulting from this type of operation.

Restart after emergency stop (from the equipment)
The equipment/tool emergency off manages the pump stop. To restart the pump after an emergency stop, it is necessary to:
- fix the problem,
- unlock the emergency button from the equipment/tool: the pump restarts automatically.

Restart after power failure
After a power failure, the pumps restarts automatically when the power comes back.

6.3.3 RS-485 serial link operation

- Wire and connect the serial link pins from the remote connector (see 5.6.1)
- Position the mains switch to I position: the pump is powered.
- Send an 'ACPON' order via the serial link (see 5.6.3):
 - the pump starts and runs at the speed set on the serial link parameters.
- **G version:** allow the purge to run (see 6.5).
- **CV version:** allow the purge and gas ballast to run (see 6.6).

Note: when ACPON is activate, if S1 contact on remote connector is closed then open, then the pump stops.

NOTICE

Rotation speed
Pump performances are guaranteed for a nominal speed of 80 Hz. Changing the rotation speed affects the pumping speed and the ultimate pressure of the pump. In low speed, it is the customer's responsibility to find the correct settings according to the pump and the process.
- For the safety of the pump, do not exceed the maximum frequency.
- Do not run the pump continuously at speeds ≤ 60 Hz.

Pump shut-down
- Isolate the pump in the pumping line (isolation valve at pump inlet, closed) and let it run for 1 hour with gas ballast or purge open (see 6.4).
- Send an 'ACPOFF' order via the serial link: the pump stops. (see 5.6.3).

Restart after emergency stop (from the equipment)
The equipment/tool emergency off manages the pump stop. To restart the pump after an emergency stop, it is necessary to:
- fix the problem,
- unlock the emergency button form the equipment/tool,
- send an 'ACPON' order via the serial link.

Restart after power failure
After a power failure, send 'ACPON' order via the serial link to restart the pump.
Operation

Switching off

⇒ Position the mains switch to O position.

Prolonged stop

If the pump has to be stopped for a prolonged period, apply the *Decommissioning* procedure (see 8).

6.3.4 Operation monitoring

The pump equipped with a three-phase frequency converter has two LED at the rear that indicate the pump operating status.

<table>
<thead>
<tr>
<th>LED</th>
<th>LED status</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Off</td>
<td></td>
<td>No power supply</td>
</tr>
<tr>
<td></td>
<td>On, constant light</td>
<td></td>
<td>The pump is powered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The pump has reached the selected speed.</td>
</tr>
<tr>
<td>Red</td>
<td>Off</td>
<td></td>
<td>No default</td>
</tr>
<tr>
<td></td>
<td>On, constant light</td>
<td></td>
<td>● During pump start-up, LED is On when the selected speed is not reached.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Presence of a default which prevents the pump running.</td>
</tr>
<tr>
<td></td>
<td>On, flashing</td>
<td></td>
<td>The thermal safety indicates that the pump temperature is too low, or too high (imminent shutdown or starting impossible).</td>
</tr>
</tbody>
</table>

Fig. 6: LED meaning on a pump equipped with a three phase frequency converter

6.4 Gas ballast operation

Principle

The user must take the appropriate measures in case of condensable vapors pumping or when gas ballast use is required (see 6.2).

When condensable vapors or moist air are being pumped, gas is compressed beyond its saturated vapor pressure in the compression phase. It can condense, impairing pump performance.

The gas ballast can be used to inject a certain quantity of air (neutral or dry gas) into the pump during the ‘compression’ phase so that the partial pressure of the pumped gas is less than its saturated vapor pressure at the temperature of the pump. Condensation is therefore impossible if this limit is not reached.

The saturated vapor pressure of a body is higher when the system is hot than when it is cold; therefore, the pump must reach operating temperature before pumping condensable vapors.

Using the gas ballast increases the ultimate pressure of the pump as well as the temperature.

Commissioning

To better pump with condensable vapors or moist air, it is necessary to operate with a hot pump. Proceed as follows:

⇒ Isolate the pump from the system (inlet isolation valve closed) and allow it to operate for 1 hour with the gas ballast open.

⇒ Then, open the isolation valve: the pump operates in the best conditions by reducing the risk of condensation inside the pump.

Recommendations

To ensure the proper discharge by the exhaust of condensable vapors, avoid to connect an ES25S type silencer.

The gas ballast can be automated. It is an accessory available upon request (see 11). Besides, the gas ballast could be supplied with filtered dry air. Contact us.

When there is a large amount of condensable, the gas ballast is not effective enough. In this case it is recommended to use a CV version of pump (see 6.2) and (see 6.6).
6.5 Purge operation

Principle
A gas purge circuit protects the low and high pressure bearings and dilutes trace amounts of corrosive gases.

Commissioning
When the inert gas pipe is connected on purge connection *(see 5.2.3)*:

- Inject inert gas purge according to the flow rate values *(see 12.2)*.

Recommendations
To ensure the proper discharge by the exhaust of corrosive gases, avoid to connect an ES25S type silencer.

Inert gas connection *(see 4.2)*.

6.6 Gas ballast and purge operation on CV version

Principle
The combined use of the gas ballast and the purge allows to remove large amounts of condensable.

Commissioning
To better pump with condensable vapors or moist air, it is necessary to operate with a hot pump. Proceed as follows:

- Isolate the pump from the system (inlet isolation valve closed) and **allow it to operate for 1 hour with the gas ballast open**.
- Then, open the isolation valve: the pump operates in the best conditions by reducing the risk of condensation inside the pump.
- Inject inert gas purge according to the flow rate values *(see 12.2)*.
- Check the level of condensable products in the external drainable silencer and drain it when necessary *(see 7.3)*.

Recommendations
The gas ballast can be automated. It is an accessory available upon request *(see 11)*. Besides, the gas ballast could be supplied with filtered dry air. Contact us.
7 Maintenance

In case of presence of corrosive gases, users are advised to observe the following precautions before working on the product.

7.1 Safety and maintenance information

Duty to inform
Every person who is involved in maintenance and servicing work on the pump must read and follow the safety-relevant parts of all associated documents.

NOTICE
Exclusion of liability
Pfeiffer Vacuum accepts no responsibility concerning equipment damage, disrupted service or physical injury resulting from maintenance carried out by technicians who have not been trained in safety rules (EMC, electrical hazards, chemical pollution). Liability and warranty claims shall be inadmissible in this case.

DANGER
Risk to the health in the event of contact with toxic substances
The vacuum pump, pumping line components, and operating media may be contaminated with toxic, corrosive, reactive, or radioactive materials, depending on the process.

⇒ Wear appropriate safety equipment when pump is disconnected for maintenance, or reinstalled, and also for oil filling and draining.
⇒ Ventilate the premises well.
⇒ Do not eliminate maintenance waste via standard disposal channels. Have it destroyed by a qualified company if necessary.
⇒ Install the inlet and exhaust blanking plates, accessories delivered with the pump or available as accessories (see chapter Accessories).

WARNING
Electric shock hazard in case of contact
When the product's mains switch is set at O, some internal components still have an electrical charge.

⇒ Make sure that the mains connection is always visible and accessible so that it can be unplugged at any time.
⇒ Disconnect the power cable from all power sources before starting any work on the product.

WARNING
Tightness after maintenance
Insufficient tightness after servicing could result in chemical hazards.

⇒ Always perform a leak test after maintenance.

WARNING
Risk of injury through hot surfaces
The exhaust temperature remains high even after the pump has stopped.

⇒ Wait for the product to cool completely before carrying out any operations on it.
Maintenance

WARNING

Other localised hazardous energies

Electrical circuits and other pressurized circuits, such as nitrogen and water are potential hazards.

⇒ Always lock out these energy sources before working on the product.

- Ensure that the maintenance technician is trained in the safety rules concerning pumped gases.
- Disconnect the mains cable on the product from all sources of power before carrying out any work on the product.
- Wait 5 minutes after switching off the electricity supply before carrying out any operations on the electrical components.
- Collect the residues from the processes and call in a competent organisation to destroy them.
- Always protect the inlet and exhaust surfaces.

7.1.1 How to contact us

Personnel trained by the manufacturer must perform the overhaul. Contact your nearest service center at the following e-mail address: support.service@adixen.fr

7.2 Maintenance frequency

<table>
<thead>
<tr>
<th>Description</th>
<th>Frequency</th>
<th>ACP 28</th>
<th>ACP 40</th>
<th>ACP 28 G</th>
<th>ACP 40 G</th>
<th>ACP 28 CV</th>
<th>ACP 40 CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump overhaul by Pfeiffer Vacuum service center.</td>
<td>22,000 h or 4 years</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External silencer draining (see 7.3)</td>
<td>according to the external silencer saturation</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maintenance frequencies are typical values for non corrosive applications. For applications using G version pump, these values can be reduced. Contact the service center (see 10).

In general no maintenance is required before product overhaul in your service center (see 10).

Life-time

Under normal operating conditions (at ambient temperature, low humidity and neutral pumped gas), in a non-polluted environment, a new pump which is regularly maintained according to the instructions in this manual (subject to the components becoming obsolete) has a life-time greater than 10 years.

7.3 Maintenance on the customer’s site

The pump does not require any maintenance on the customer’s site apart from that described in this manual. All other maintenance must be carried out by your service center (see 10).

⇒ Clean the outer surfaces of the product using a clean, lint-free cloth and a product that will not damage the screen-printed surfaces and adhesive labels.

⇒ Cleaning of the air ventilation grids with a cloth to remove dust. Do not use compressed air blower.
Cleaning the inlet filter

The models ACP 28 and ACP 40 are fitted with a filter in the inlet flange. Check the cleanliness of this filter regularly.

- Disconnect the pump inlet from the pumping line and remove the conical filter (2).
- Wash the filter with industrial solvent.
- Dry it before refitting.

Draining the external silencer (CV version)

The maintenance frequency depends on the amount of condensable vapors pumped in the application in which the pump is installed. Users are advised:

- either to regularly check the saturation of the silencer and drain it when necessary.
- or to connect a permanent drain system instead of the draining plug (1) on the external silencer.

7.4 Standard repair exchange

To proceed with a standard exchange, key steps must be followed in sequential order:

- External silencer draining (see 7.3)
- Disconnecting the pump from the installation (see 7.4.1)
- Conditioning the pump for shipping (see 7.4.2)
- Declaration of contamination (see 10)
- Handling the new pump (see 3)
- Installing the new pump (see 5)

When returning a product to our service center, please consult the Service procedure (see 10) and fill in the contamination declaration available on our website.
7.4.1 Disconnecting the pump from the installation

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk to the health in the event of contact with toxic substances</td>
</tr>
<tr>
<td>During pump disconnection, operator could be in contact with process residues on the exhaust that could cause severe injury or death.</td>
</tr>
<tr>
<td>➔ Take the appropriate safety recommendations to prevent injury. Consult the department manager for instructions and safety information.</td>
</tr>
</tbody>
</table>

➔ Position the mains switch ☐ to ☐ position.
➔ Switch off your main circuit breaker.
➔ Disconnect the main plug *(see 5.4.2)*.
➔ Disconnect the nitrogen purge connector.
➔ Disconnect the pump from the inlet piping and fit a blanking plate on the inlet *(see 11)*.
➔ Disconnect the pump from the exhaust and fit a blanking plate on the exhaust port *(see 11)*.
➔ Remove the pump from the installation.

7.4.2 Conditioning the pump for shipping

After use in clean applications
➔ Install the connecting accessories provided with the pump when it was first delivered. Contact the service center to order accessories if necessary *(see 11)*.
➔ Join the cover plug (delivered with the pump) connected to the remote connector.

After use with traces of corrosive gases
➔ Respect safety instructions before working on the product *(see 2.1)* and *(see 7.1)*.
➔ Install the connecting accessories allowing to seal the pump *(see 11)*.
➔ Join the cover plug (delivered with the pump) connected to the remote connector.

Product transport and shipping
For product transport and shipping, pack it in the original packing and apply the instructions from the *Service* procedure *(see 10)*.
8 Decommissioning

8.1 Shutting down for longer periods

- Stop the pump according to pump shut-down procedure (see 6.3.1), (see 6.3.2) or (see 6.3.3).
- Drain the external silencer (CV version) (see 7.3).
- Disconnect the pump from the installation (see 7.4.1).
- Store the pump (see 3.2).

8.2 Re-starting

To restart the pump after a prolonged storage, refer to the installation instructions (see 5).

8.3 Disposal

According to the regulations 2012/19/EC about Waste of electrical and electronic equipment, and 2011/65/EC about Restriction of Hazardous substances, the manufacturer provides a paid recycling service for the end of life of the equipment.

Any obligation of the manufacturer to take back such equipment shall apply only to complete not amended or modified equipment, using Pfeiffer Vacuum SAS original spare parts, delivered by Pfeiffer Vacuum, containing e.g. all its components and subassemblies.

This obligation will not cover the shipping cost to a Pfeiffer Vacuum reclamation facility.

Before returning the product, please consult the Service procedure (see 10). Fill in the declaration of contamination form available on our website. Attach it to the product before shipping to the closest service-repair office.

WARNING

Environmental protection

The product or its components must be disposed of in accordance with the applicable regulations relating to environmental protection and human health, with a view to reducing natural resource waste and preventing pollution.

The materials

Our products contain different materials which must be recycled:

<table>
<thead>
<tr>
<th>Description</th>
<th>SD version</th>
<th>G version/CV version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet</td>
<td>-</td>
<td>Brass</td>
</tr>
<tr>
<td>Purge line</td>
<td>-</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Valves</td>
<td></td>
<td>FPM</td>
</tr>
<tr>
<td>O-rings, lip seals</td>
<td>FPM / NBR / PTFE</td>
<td></td>
</tr>
<tr>
<td>Shaft, spring, inlet filter</td>
<td></td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Stators, lobes</td>
<td>Aluminum, aluminum alloy + Al2O3 coating</td>
<td></td>
</tr>
<tr>
<td>Screws, worked pins, deflectors</td>
<td>Stainless steel</td>
<td></td>
</tr>
<tr>
<td>Ball barings</td>
<td>Steel, PFPE grease</td>
<td></td>
</tr>
<tr>
<td>Inlet and exhaust flanges</td>
<td>Aluminum</td>
<td></td>
</tr>
</tbody>
</table>

Take particular precautions for:
- fluoroelastomers which may breakdown if they are subjected to high temperatures.
- components in contact with the products resulting from the processes which may have been contaminated.

This list of materials corresponds to the products listed in the chapter (see 1.1). Contact us for products with specific features.
9 Malfunctions

Read the safety instructions for maintenance (see 7.1).

9.1 Trouble at pump start-up

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The pump does not start and the fan does not run</td>
<td>Mains switch</td>
<td>Check the mains switch position to I.</td>
</tr>
<tr>
<td></td>
<td>The pump supply voltage is not compatible with the equipment's power configuration</td>
<td>Check the equipment's voltage corresponds to required power voltage (see 1.2.4).</td>
</tr>
<tr>
<td></td>
<td>Main cable not correctly connected or damaged</td>
<td>Check / replace the main power cable.</td>
</tr>
<tr>
<td></td>
<td>Other problem</td>
<td>Contact your service center.</td>
</tr>
<tr>
<td>The pump does not start but the fan runs</td>
<td>Temperature</td>
<td>Check the pump ventilation conditions (see 5.1).</td>
</tr>
<tr>
<td></td>
<td>Remote control connector wiring</td>
<td>Check that the cover plug is properly connected to the remote connector at the rear of the pump.</td>
</tr>
<tr>
<td></td>
<td>Other problem</td>
<td>Contact your service center.</td>
</tr>
</tbody>
</table>

9.2 The pump runs incorrectly

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump runs intermittently</td>
<td>Temperature</td>
<td>Check the pump ventilation conditions (see 5.1).</td>
</tr>
<tr>
<td></td>
<td>The pump supply voltage is not compatible with the equipment's power configuration</td>
<td>Check the equipment's voltage corresponds to required power voltage (see 1.2.4).</td>
</tr>
<tr>
<td></td>
<td>Other problem</td>
<td>Contact your service center.</td>
</tr>
<tr>
<td>Pump noisy</td>
<td>Gas ballast</td>
<td>Check if the gas ballast is open.</td>
</tr>
<tr>
<td></td>
<td>The pressure does not go down - leak in the installation</td>
<td>Check the pressure at the pump inlet (see 6.1).</td>
</tr>
<tr>
<td></td>
<td>Vibration</td>
<td>Check that the pump is properly attached to the frame.</td>
</tr>
<tr>
<td></td>
<td>Other problem</td>
<td>Contact your service center.</td>
</tr>
<tr>
<td>Bad vacuum</td>
<td>Gas ballast</td>
<td>Check if the gas ballast is open.</td>
</tr>
<tr>
<td></td>
<td>Purge (G and CV versions)</td>
<td>If the purge is used: check the purge connection between pump and installation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the purge is not used: check the tightness of the plug installed on the purge port.</td>
</tr>
<tr>
<td></td>
<td>Rotation speed</td>
<td>If remote controlled via RS-485: check the value of the speed set point (see 5.6.3).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If remote controlled via dry contacts: check the contact setting (see 5.5.2).</td>
</tr>
<tr>
<td></td>
<td>Pumping of condensable vapors</td>
<td>If the application allows it, let the pump to run for 30 min to 1 hour with gas ballast open; this evacuates the condensable vapors.</td>
</tr>
<tr>
<td></td>
<td>Defective gauge</td>
<td>Check the accuracy of the measurement means.</td>
</tr>
<tr>
<td></td>
<td>Leak in the installation</td>
<td>Perform a leak test on the pumping line.</td>
</tr>
<tr>
<td></td>
<td>Other problem</td>
<td>Contact your service center.</td>
</tr>
</tbody>
</table>
10 Service

Pfeiffer Vacuum offers first-class customer service!

- On-Site maintenance for many products
- Overhaul/repair at the nearby Service Location
- Fast replacement with refurbished exchange products in mint condition
- Advice on the most cost-efficient and quickest solution

Detailed information, addresses and forms at: www.pfeiffer-vacuum.com (Service).

Overhaul and repair at the Pfeiffer Vacuum Service Center

The following general recommendations will ensure a fast, smooth servicing process:

- Fill out the "Service Request/Product Return" form and send it to your local Pfeiffer Vacuum Service contact.
- Include the confirmation on the service request from Pfeiffer Vacuum with your shipment.
- Fill out the declaration of contamination and include it in the shipment (mandatory!). The Declaration of contamination is valid for any product/device including a part exposed to vacuum.
- Dismantle all accessories and keep them.
- Close all the flange opening ports by using the original protective covers or metallic airtight blank flanges for contaminated devices.
- If possible, send the pump or unit in its original packaging.

Sending contaminated pumps or devices

No devices will be accepted if they are contaminated with micro-biological, explosive, or radioactive substances. "Hazardous substances" are substances and compounds in accordance with the hazardous goods regulations (current version).

- Neutralize the pump by flushing it with nitrogen or dry air.
- Close all openings airtight.
- Seal the pump or device in suitable protective film.
- Return the pump/device only in a suitable and sturdy transport container and send it in while following applicable transport conditions.

Pump or device returned without declaration of contamination form fully completed and/or not secured in suitable packaging will be decontaminated and/or returned at the shipper’s expense.

Exchange or repair

The factory operating parameters are always pre-set with exchange or repaired devices. If you use specific parameters for your application, you have to set these again.

Service orders

All service orders are carried out exclusively according to our general terms and conditions for the repair and maintenance, available on our website.
11 Accessories

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Description</th>
<th>Dimension</th>
<th>Model</th>
<th>P/N</th>
</tr>
</thead>
</table>
| Inlet filter | Installed on the pump inlet, it allows to collect particles with a diameter greater than 25 microns (in clean applications such as vacuum packing, metallurgy, lamp manufacture, evaporation, etc...). | DN 25 ISO-KF IPF 25
 | | DN 40 ISO-KF IPF 40 | | | |
| Exhaust silencer | It allows to reduce noise level at the exhaust when the pump operates at high pressures, on clean applications. Noise level reduction at atmospheric pressure (-12 dBA). | DN 25 ISO-KF ES25SS | | |
| Noise reduction cover | In order to reduce significantly noise level. Noise level reduction (-5 dBA) at 35 °C. max. ambient temperature. | NRC 28/40 | | |
| Sound enclosure kit | In order to reduce significantly noise level. Noise level reduction (-10 dBA) at 32 °C. max. ambient temperature. | SEK 28-40 | | |
| Frequency converter interface socket | In order to recover the information the signal 'pump at speed' and to manage a power supply up to 24 VDC - 1 A. | | | |
| Pump fastening kit | It allows to fasten the pump in the equipment with plates (M6 screws for frame assembly not supplied) (compatible with all pump models). | | | |
| Wheel kit | It allows to install 4 wheels on the frame to move easier the pump (compatible with all pump models). | 230 V 50/60Hz
 | | 200 V 50/60 Hz
 | | 110 V 60 Hz
 | | 100 V 50/60 Hz
 | | 24VDC | | |
| Automatic gas ballast | It ensures tightness when the pump stops or it can be used to remote control cyclical air inlets (compatible with all pump models). | ISV 25 - 240 V 50/60 Hz
 | | ISV 25 - 220 V 50/60 Hz
 | | ISV 25 - 200 V 50/60 Hz
 | | ISV 25- 110 V 50/60 Hz
 | | ISV 25 -100 V 50/60 Hz
 | | ISV 25 - 24VDC | | |
| Isolation valve | Installed upstream of the pump, it enables the pump to be reset to the atmospheric pressure by isolating it from the pumping line. | ISV 40 - 240 V 50/60 Hz
 | | ISV 40 - 220 V 50/60 Hz
 | | ISV 40 - 200 V 50/60 Hz
 | | ISV 40- 110 V 50/60 Hz
 | | ISV 40 - 100V 50/60 Hz
 | | ISV 40 - 24VDC | | |
| Connecting accessories | Centering ring with FPM o-ring
 | | DN 25 ISO-KF
 | | DN 40 ISO-KF | | |
| Blanking plate in stainless steel | | DN 25 ISO-KF
 | | DN 40 ISO-KF | | |
| Quick-connect clamp | | DN 25 ISO-KF
 | | DN 40 ISO-KF | | |

Table 1: Refer to the accessory operating instructions to install the accessory.
12 Technical data and dimensions

12.1 General

Basic principles for the Technical Data of Pfeiffer Vacuum dry compact multi-stage Roots pumps:

- Recommendations of PNEUROP committee PN5
- Sound pressure level at ultimate pressure according to EN ISO 2151

12.2 Technical data

<table>
<thead>
<tr>
<th>Technical data</th>
<th>Units</th>
<th>ACP 28</th>
<th>ACP 28 G</th>
<th>ACP 28 CV</th>
<th>ACP 40</th>
<th>ACP 40 G</th>
<th>ACP 40 CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet flange (ISO-KF)</td>
<td>DN 25</td>
<td>DN 25</td>
<td>DN 25</td>
<td>DN 40</td>
<td>DN 40</td>
<td>DN 40</td>
<td>DN 40</td>
</tr>
<tr>
<td>Pumping speed max.</td>
<td>m³/h</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Typical ultimate pressure (without purge nor gas ballast)</td>
<td>hPa</td>
<td>3·10⁻²</td>
<td>3·10⁻²</td>
<td>3·10⁻²</td>
<td>3·10⁻²</td>
<td>3·10⁻²</td>
<td>3·10⁻²</td>
</tr>
<tr>
<td>Typical ultimate pressure (with gas ballast open)</td>
<td>hPa</td>
<td>1·10⁻¹</td>
<td>-</td>
<td>2·10⁻¹</td>
<td>1·10⁻¹</td>
<td>-</td>
<td>2·10⁻¹</td>
</tr>
<tr>
<td>Typical ultimate pressure (with purge)</td>
<td>hPa</td>
<td>-</td>
<td>1·10⁻¹</td>
<td>1·10⁻¹</td>
<td>-</td>
<td>1·10⁻¹</td>
<td>1·10⁻¹</td>
</tr>
<tr>
<td>Typical ultimate pressure (with purge and gas ballast open)</td>
<td>hPa</td>
<td>-</td>
<td>-</td>
<td>2·10⁻¹</td>
<td>-</td>
<td>-</td>
<td>2·10⁻¹</td>
</tr>
<tr>
<td>Maximum ultimate pressure (without purge nor gas ballast)</td>
<td>hPa</td>
<td>4·10⁻²</td>
<td>4·10⁻²</td>
<td>4·10⁻²</td>
<td>4·10⁻²</td>
<td>4·10⁻²</td>
<td>4·10⁻²</td>
</tr>
<tr>
<td>Maximum ultimate pressure (with gas ballast open)</td>
<td>hPa</td>
<td>2·10⁻¹</td>
<td>-</td>
<td>3·10⁻¹</td>
<td>2·10⁻¹</td>
<td>-</td>
<td>3·10⁻¹</td>
</tr>
<tr>
<td>Maximum ultimate pressure (with purge)</td>
<td>hPa</td>
<td>-</td>
<td>2·10⁻¹</td>
<td>2·10⁻¹</td>
<td>-</td>
<td>2·10⁻¹</td>
<td>2·10⁻¹</td>
</tr>
<tr>
<td>Maximum ultimate pressure (with purge and gas ballast open)</td>
<td>hPa</td>
<td>-</td>
<td>-</td>
<td>3·10⁻¹</td>
<td>-</td>
<td>-</td>
<td>3·10⁻¹</td>
</tr>
<tr>
<td>Max. pumping capacity of pure water vapor (gas ballast open)</td>
<td>g/h</td>
<td>120</td>
<td>-</td>
<td>700</td>
<td>120</td>
<td>-</td>
<td>700</td>
</tr>
<tr>
<td>Continuous inlet pressure, Max.</td>
<td>hPa</td>
<td>1013</td>
<td>1013</td>
<td>1013</td>
<td>1013</td>
<td>1013</td>
<td>1013</td>
</tr>
<tr>
<td>Maximum exhaust pressure</td>
<td>hPa</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>N₂ Purge flow</td>
<td>slm</td>
<td>-</td>
<td>3.7</td>
<td>40</td>
<td>-</td>
<td>3.7</td>
<td>40</td>
</tr>
<tr>
<td>Gas ballast flow at atmospheric pressure</td>
<td>m³/h</td>
<td>1.2</td>
<td>-</td>
<td>2.4</td>
<td>1.2</td>
<td>-</td>
<td>2.4</td>
</tr>
<tr>
<td>Sound level (gas ballast and purge closed)</td>
<td>dB(A)</td>
<td>< 70</td>
<td>< 70</td>
<td>< 70</td>
<td>< 70</td>
<td>< 70</td>
<td>< 70</td>
</tr>
<tr>
<td>Helium leak rate</td>
<td>hPa l/s</td>
<td>< 5 · 10⁻⁷</td>
</tr>
<tr>
<td>Power supply (according to ordering guide)</td>
<td>V</td>
<td>110-230 V- 1-phase or 200-440 V- 3-phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption at ultimate pressure</td>
<td>W</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Power consumption at atmospheric pressure</td>
<td>W</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
</tr>
<tr>
<td>Dimensions</td>
<td>(see 12.4)</td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

(1) In accordance with EC regulations, the pumps can withstand a voltage variation of ± 10%.
(2) at ambient temperature: 20°C.
(3) Inert gas flushing 300 hPa relative pressure.
(4) Test by Helium spray.

Conversion table: pressure units

<table>
<thead>
<tr>
<th></th>
<th>mbar</th>
<th>bar</th>
<th>Pa</th>
<th>hPa</th>
<th>kPa</th>
<th>Torr</th>
<th>mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>mbar</td>
<td>1</td>
<td>1 · 10⁻³</td>
<td>100</td>
<td>1</td>
<td>0.1</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>1000</td>
<td>1</td>
<td>1 · 10⁵</td>
<td>1000</td>
<td>100</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>Pa</td>
<td>0.01</td>
<td>1 · 10⁻³</td>
<td>1</td>
<td>0.01</td>
<td>1 · 10⁻³</td>
<td>7.5 · 10⁻³</td>
<td></td>
</tr>
</tbody>
</table>

PFEIFFER VACUUM
Technical data and dimensions

Conversion table: gas throughput units

<table>
<thead>
<tr>
<th>mbar·l/s</th>
<th>Pa·m³/s</th>
<th>sccm</th>
<th>Torr·l/s</th>
<th>atm·cm³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>mbar·l/s</td>
<td>1</td>
<td>0.1</td>
<td>59.2</td>
<td>0.75</td>
</tr>
<tr>
<td>Pa·m³/s</td>
<td>10</td>
<td>1</td>
<td>592</td>
<td>7.5</td>
</tr>
<tr>
<td>sccm</td>
<td>1.69 · 10⁻²</td>
<td>1.69 · 10⁻³</td>
<td>1</td>
<td>1.27 · 10⁻²</td>
</tr>
<tr>
<td>Torr·l/s</td>
<td>1.33</td>
<td>0.133</td>
<td>78.9</td>
<td>1</td>
</tr>
<tr>
<td>atm·cm³/s</td>
<td>1.01</td>
<td>0.101</td>
<td>59.8</td>
<td>0.76</td>
</tr>
</tbody>
</table>

1 Pa = 1 N/m²

12.3 Facilities characteristics

12.3.1 Environmental conditions

<table>
<thead>
<tr>
<th>Use</th>
<th>indoor use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation altitude</td>
<td>up to 2000 m</td>
</tr>
<tr>
<td>Ingress protection</td>
<td>IP20</td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>12-40 °C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-10-+60 °C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>max. 80% at T ≤ 31°C, up to max. 50% at T ≤ 40°C</td>
</tr>
<tr>
<td>Overvoltage protection</td>
<td>category II</td>
</tr>
<tr>
<td>Pollution degree</td>
<td>rate 2</td>
</tr>
</tbody>
</table>

12.3.2 Nitrogen characteristics

<table>
<thead>
<tr>
<th>H₂O concentration</th>
<th>< 10 ppm v</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ concentration</td>
<td>< 5 ppm v</td>
</tr>
<tr>
<td>Dust</td>
<td>< 1 μm</td>
</tr>
<tr>
<td>Oil</td>
<td>< 0.1 ppm v</td>
</tr>
<tr>
<td>Absolute pressure</td>
<td>1.5 · 10⁵ Pa</td>
</tr>
</tbody>
</table>

Nitrogen inlet 1/4 BSPT male connector Stainless steel

12.3.3 Electrical characteristics

<table>
<thead>
<tr>
<th>Power supply</th>
<th>Single-Phase LV (100-115V)</th>
<th>HV (200-230V)</th>
<th>Three-Phase LV (200-240V)</th>
<th>HV (240-440V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main circuit breaker rating (minimum values)</td>
<td>12 A</td>
<td>6 A</td>
<td>5 A</td>
<td>3A</td>
</tr>
<tr>
<td>Cable wire specifications</td>
<td>2.5 mm²</td>
<td>1.5 mm²</td>
<td>1.5 mm²</td>
<td>1 mm²</td>
</tr>
</tbody>
</table>

Circuit breaker with a minimum interrupting short circuit current 10 kA
GFI (or RCD) type B, differential circuit breaker compatible with type T.T electrical network
1) For other networks, types T.N or I.T, use the proper protection device

GFI: Ground Fault Interrupter
12.4 Dimensions

![Fig. 8: ACP 28/ACP 40/ACP 28 G/ACP 40 G - Dimensions (mm)](image)

ACP 28/ACP 40	A	B	C	E	F	G	J	H	L	M	N	P	Q	R	S	T	U	AA	AB	AC	AH		
Single-phase	322	627	20	193	250	272	228	150	308	278	96	450	76	122	12	43	93	25	105	80	33	60	127
Three-phase	314	612	31	187	250	272	235	150	302	272	90	450	70	126	12	43	88	28	105	80	34	60	127

![Fig. 9: ACP 28 CV/ACP 40 CV - Dimensions (mm)](image)

<table>
<thead>
<tr>
<th>ACP 28 CV/ACP 40 CV</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>K</th>
<th>J</th>
<th>I</th>
<th>H</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>AA</th>
<th>AB</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-phase</td>
<td>322</td>
<td>627</td>
<td>20</td>
<td>193</td>
<td>250</td>
<td>272</td>
<td>228</td>
<td>150</td>
<td>308</td>
<td>287</td>
<td>90</td>
<td>450</td>
<td>76</td>
<td>122</td>
<td>12</td>
<td>43</td>
<td>88</td>
<td>28</td>
<td>105</td>
<td>80</td>
<td>34</td>
<td>60</td>
</tr>
<tr>
<td>Three-phase</td>
<td>314</td>
<td>612</td>
<td>31</td>
<td>187</td>
<td>250</td>
<td>272</td>
<td>235</td>
<td>150</td>
<td>302</td>
<td>281</td>
<td>90</td>
<td>450</td>
<td>70</td>
<td>126</td>
<td>12</td>
<td>43</td>
<td>88</td>
<td>28</td>
<td>105</td>
<td>80</td>
<td>34</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACP 28 CV/ACP 40 CV</th>
<th>AA</th>
<th>AB</th>
<th>AC</th>
<th>AD</th>
<th>AG</th>
<th>AE</th>
<th>AF</th>
<th>AH</th>
<th>AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-phase</td>
<td>80</td>
<td>60</td>
<td>192</td>
<td>308</td>
<td>485</td>
<td>43</td>
<td>224</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Three-phase</td>
<td>80</td>
<td>34</td>
<td>60</td>
<td>192</td>
<td>305</td>
<td>479</td>
<td>43</td>
<td>224</td>
<td>118</td>
</tr>
</tbody>
</table>
Technical data and dimensions

Wheel kit dimensions

Fastening kit dimensions $BA = 471$ mm

12.5 Weight distribution and seismic brackets

Center of gravity

<table>
<thead>
<tr>
<th>Model</th>
<th>Center of gravity (mm)</th>
<th>Load by foot (daN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X1</td>
<td>X2</td>
</tr>
<tr>
<td>ACP 28/ACP 40 Single/Three-phase</td>
<td>69.5</td>
<td>80.5</td>
</tr>
<tr>
<td>ACP 28 G/ACP 40 G Single/Three-phase</td>
<td>69.5</td>
<td>80.5</td>
</tr>
<tr>
<td>ACP 28 CV/ACP 40 CV Single-Phase</td>
<td>69.5</td>
<td>80.5</td>
</tr>
<tr>
<td>ACP 28 CV/ACP 40 CV Three-phase</td>
<td>70.5</td>
<td>79.5</td>
</tr>
</tbody>
</table>
Load on foot with fastening kit

It is strongly recommended to secure the pump on the host tool with 4 screws (supply of these screws is the customer’s responsibility, at least 2 screws per fixation plate). The screw material must comply with foot load specifications, given in the table below.

<table>
<thead>
<tr>
<th>Fastening plate, thickness: 6 mm (delivered in the fastening kit)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Load by foot (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1</td>
</tr>
<tr>
<td>ACP 28/ACP 40</td>
<td>Tension (Fa)</td>
</tr>
<tr>
<td>ACP 28 G/ACP 40 G</td>
<td>Shearing (Fr)</td>
</tr>
<tr>
<td>ACP 28 CV/ACP 40 CV</td>
<td></td>
</tr>
<tr>
<td>Single-phase / Three-phase</td>
<td></td>
</tr>
</tbody>
</table>

6 Pump frame
7 M 6 X 20 screw, qty 4, grade 12-9
8 M 6 X 20 screw, qty 4, grade 12-9
ETL Mark

AUTHORIZATION TO MARK

This authorizes the application of the Certification Mark(s) shown below to the models described in the Product(s) Covered section when made in accordance with the conditions set forth in the Certification Agreement and Listing Report. This authorization also applies to multiple listee model(s) identified on the correlation page of the Listing Report.

This document is the property of Intertek Testing Services and is not transferable. The certification mark(s) may be applied only at the location of the Party Authorized To Apply Mark.

Applicant: adixen Vacuum Products
Address: 98 Avenue de Brogny
74009 Annecy
Country: France
Contact: Olivier BOULON
Phone: 0033 (0)4 50 65 79 56
FAX: 0033 (0)4 50 65 75 76
Email: olivier.boulon@adixen.fr

Manufacturer: adixen Vacuum Products
Address: 98 Avenue de Brogny
74009 Annecy
Country: France
Contact: Olivier BOULON
Phone: 0033 (0)4 50 65 79 56
FAX: 0033 (0)4 50 65 75 76
Email: olivier.boulon@adixen.fr

Party Authorized To Apply Mark: Same as Manufacturer
Report Issuing Office: Intertek France
Control Number: 3026716
Authorized by: Bo Berglot for Thomas J. Patterson, Certification Manager

This document supersedes all previous Authorizations to Mark for the noted Report Number.

Intertek Testing Services NA, Inc.
545 East Algonquin Road, Arlington Heights, IL 60005
Telephone 800-345-3851 or 847-439-5667 Fax 312-283-1672

Standard(s):
UL 61010-1 Issued: 2012/05/11 Ed: 3 Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use - Part 1: General Requirements

CAN/CSA C22.2 No 61010-1 Issued: 2012/05/11 Ed: 3 Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use Part 1: General Requirements

Product: Electrical Dry Primary Pumps

Brand Name: adixen

Models: ACP15 XX, ACP15V XX, ACP28 XX, ACP40 XX, the XX can be G, LG or CV represents different options existing for non electrical or specific adaption for customer application.

ATM for Report 2300933CDG-001
Page 1 of 1
ATM Issued: 10-Jun-2015
ED 16.3.15 (1-Jun-12) Mandatory
Declaration of conformity

We hereby declare that the product cited below satisfies all relevant provisions according to the following EC directives:

- Machinery 2006/42/EC (Annex II, no. 1 A)
- Electromagnetic Compatibility 2014/30/EU
- Restriction of the use of certain Hazardous Substances 2011/65/EU
- Low Voltage 2014/35/EU

The technical file is drawn up by Mr Gilles Baret, Pfeiffer Vacuum SAS, [simplified joint stock company], 98, avenue de Brogny · B.P. 2069, 74009 Annecy cedex.

ACP 28 - ACP 40 - ACP 28 G - ACP 40 G - ACP 28 CV - ACP 40 CV

Harmonised standards and national standards and specifications which have been applied:

- Standard NF EN-1012-2: 2009
- Standard NF EN-61010-1: 2011
- Standard NF EN-61000-6-2: 2005
- Standard NF EN-61000-6-4: 2007

Signatures:

Pfeiffer Vacuum SAS
98, avenue de Brogny
B.P. 2069
74009 Annecy cedex
France

(M.Taberlet) (M. Baret) 01/07/15
President Products and Technologies Director
VACUUM SOLUTIONS FROM A SINGLE SOURCE
Pfeiffer Vacuum stands for innovative and custom vacuum solutions worldwide, technological perfection, competent advice and reliable service.

COMPLETE RANGE OF PRODUCTS
From a single component to complex systems:
We are the only supplier of vacuum technology that provides a complete product portfolio.

COMPETENCE IN THEORY AND PRACTICE
Benefit from our know-how and our portfolio of training opportunities!
We support you with your plant layout and provide first-class on-site service worldwide.

Are you looking for a perfect vacuum solution?
Please contact us:

Pfeiffer Vacuum GmbH
Headquarters • Germany
T +49 6441 802-0
info@pfeiffer-vacuum.de

www.pfeiffer-vacuum.com