Table of contents

1 About this manual .. 3
1.1 Validity ... 3
1.2 Conventions ... 3
2 Safety .. 5
2.1 Safety precautions .. 5
2.2 Protective equipment .. 6
2.3 Proper use ... 6
2.4 Improper use .. 6
3 Transport and storage ... 7
3.1 Transport ... 7
3.2 Storage .. 7
4 Product description ... 8
4.1 Product identification 8
4.2 Function ... 9
4.3 Range of application 9
5 Installation .. 10
5.1 Setting up the pump ... 10
5.2 Connecting the vacuum side 11
5.3 Connecting the exhaust side 11
5.4 Connecting to the mains power supply 12
5.5 Filling up the operating fluid 14
5.6 Operating fluid temperature monitoring (option) 14
5.7 Operating fluid level monitoring (option) 15
5.8 Connecting the heat exchanger (option) 15
6 Operation .. 17
6.1 Before switching on .. 17
6.2 Switching on the pump 17
6.3 Pumping condensable vapours 18
6.4 Switching off the pump 19
7 Maintenance ... 20
7.1 Precautions .. 20
7.2 Changing the operating fluid 21
7.3 Changing the exhaust filter in the operating fluid separator .. 23
7.4 Cleaning the float valve 25
7.5 Changing the intake filter 26
7.6 Changing the gas ballast filter 26
7.7 Cleaning the fan covers and radiator 26
8 Decommissioning .. 27
8.1 Shutting down for longer periods 27
8.2 Re-starting .. 27
8.3 Disposal .. 27
9 Malfunctions .. 27
9.1 Rectifying malfunctions 28
10 Service .. 29
11 Spare parts .. 30
11.1 Spare parts packages 31
12 Accessories ... 31
13 Technical data ... 32
Declaration of conformity 35
1 About this manual

1.1 Validity

This operating manual is for customers of Pfeiffer Vacuum. It describes the functioning of the designated product and provides the most important information for safe use of the unit. The description follows applicable EU guidelines. All information provided in this operating manual refer to the current state of the product's development. The documentation remains valid as long as the customer does not make any changes to the product. Up-to-date operating instructions can also be downloaded from www.pfeiffer-vacuum.com.

1.2 Conventions

Safety instructions

The safety instructions in Pfeiffer Vacuum operating manuals are the result of risk evaluations and hazard analyses and are oriented on international certification standards as specified by UL, CSA, ANSI Z-535, SEMI S1, ISO 3864 and DIN 4844. In this document, the following hazard levels and information are considered:

<table>
<thead>
<tr>
<th>Hazard Level</th>
<th>Description</th>
</tr>
</thead>
</table>
| **DANGER** | Immediate danger
Death or very severe injuries can occur. |
| **WARNING** | Possible danger
Injuries or severe property damages can occur. |
| **CAUTION** | Possible danger
Injuries or property damages can occur. |
| **NOTE** | Command or note
Command to perform an action or information about properties, the disregarding of which may result in damage to the product. |
About this manual

Pictograph definitions
- **禁**: Prohibition of an action or activity in connection with a source of danger, the disregarding of which may result in serious accidents.
- **警告**: Warning of a displayed source of danger in connection with operation of the unit or equipment.
- **注意**: Command to perform an action or task associated with a source of danger, the disregarding of which may result in serious accidents.

Instructions in the text
- ➔ **Work instruction**: here you have to do something.

Symbols used
- The following symbols are used consistently throughout in all illustrations:
 - 🛑 Vacuum flange
 - 🗽 Exhaust flange
 - 🇬 Gas ballast valve
 - 🌐 Power connection
2 Safety

2.1 Safety precautions

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty to inform</td>
</tr>
<tr>
<td>Each person involved in the installation, operation or maintenance of the vacuum pump must read and observe the safety-related parts of these operating instructions.</td>
</tr>
<tr>
<td>➔ The operator is obligated to make operating personnel aware of dangers originating from the vacuum pump, the pumped medium and the entire system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation and operation of accessories</td>
</tr>
<tr>
<td>Pfeiffer Vacuum pumps can be equipped with a series of adapted accessories. The installation, operation and maintenance of connected devices are described in detail in the operating instructions of the individual components.</td>
</tr>
<tr>
<td>➔ For information on order numbers of components, see "Accessories".</td>
</tr>
<tr>
<td>➔ Use original accessory parts only.</td>
</tr>
</tbody>
</table>

- Do not expose any body parts to the vacuum.
- Observe the safety and accident prevention regulations.
- Check regularly that all safety precautions are being complied with.
- Do not carry out any unauthorised modifications or conversions to the pumps.
- Depending on the operating and ambient conditions, the surface temperature of the pumps may rise above 70 °C. Use suitable finger guards if necessary.
- When returning the pumps to us please note the instructions in the Service section.
2.2 Protective equipment

Determined situations concerning the handling of vacuum pumps require wearing of personal protective equipment. The owner, respectively the employer are obligated to provide adequate equipment to any operating persons.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger to health by hazardous substances during maintenance or installation</td>
</tr>
<tr>
<td>Depending on the process vacuum pumps, components or operating fluids can be contaminated by toxic, reactive or radioactive substances.</td>
</tr>
<tr>
<td>→ Wear adequate protective equipment during maintenance and repairs or in case of reinstallation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of injury through hot surfaces</td>
</tr>
<tr>
<td>Vacuum pumps can become hot during operation.</td>
</tr>
<tr>
<td>→ Allow the pump to cool before maintenance and repairs.</td>
</tr>
<tr>
<td>→ If necessary wear protective gloves according to directive EN 420.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased noise emission!</td>
</tr>
<tr>
<td>Increased noise emission can occur within a limited area surrounding the vacuum pump.</td>
</tr>
<tr>
<td>→ Provide noise protection or</td>
</tr>
<tr>
<td>→ wear hearing protection.</td>
</tr>
</tbody>
</table>

2.3 Proper use

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE conformity</td>
</tr>
<tr>
<td>The manufacturer's declaration of conformity becomes invalid if the operator modifies the original product or installs additional components.</td>
</tr>
<tr>
<td>→ Following installation into a plant and before commissioning, the operator must check the entire system for compliance with the valid EU directives and reassess it accordingly.</td>
</tr>
</tbody>
</table>

- The vacuum pump may only be used to generate a vacuum.
- Installation, operating and maintenance regulations must be complied with.
- Other accessories, than those described in this manual, must not be used without the agreement of Pfeiffer Vacuum.

2.4 Improper use

Improper use will cause all claims for liability and warranties to be forfeited. Improper use is deemed to be all use for purposes deviating from those mentioned above, especially:

- Pumping of corrosive gases.
- Pumping of explosive media.
- Operation in potentially explosive areas.
- Pumping of gases containing impurities such as particles, dusts and condensate; note the vapour compatibility levels of the pump.
- Pumping of substances that tend to sublime.
- Use of the vacuum pump to generate pressure.
- Pumping of liquids.
Transport and storage

3.1 Transport

WARNING

Danger from falling and swinging loads!
When lifting the pump there is a danger of falling parts.

→ Make sure that there are no persons under the suspended load.
→ Close off and supervise the area under the pump.

CAUTION

Operating fluid overflows into the pump system if the pump is tilted!
Vane fractures when pump starts up.

→ Only transport pump without operating fluid.
→ Look for transportation damage when receiving the pump.
→ Use only a forklift to transport pump packed on pallet.
→ Unpack pump and undo screws on transport container.
→ Reuse the transport container. Vacuum pumps should be transported or shipped in the original packing only.

Transport without packaging

→ Remove the locking cap from the vacuum and exhaust flange immediately before connecting!
→ Use only the eye bolt on the top side of the pump to lift the pump.
→ To lift the pump without motor and if accessories are mounted, fit another strap at a suitable position.

3.2 Storage

→ Check that all the openings on the pump are securely closed.
→ Store the pump in a cool, dry place; preferably at temperatures between -10 °C and +40 °C.
 – For a longer period of storage, seal the pump in a PE bag with drying agents enclosed.
 – For a period of storage longer than two years, it is recommended to change the operating fluid before using the pump.
4 Product description

4.1 Product identification

To correctly identify the product when communicating with Pfeiffer Vacuum, always have the information from the rating plate available and use it:

- Pump model and model number
- Serial number
- Type and amount of operating fluid
- Date of manufacture

Please find the voltage range and motor-related data on the separately attached motor rating plate.

Scope of delivery

- Pump with drive unit
- Locking cap for vacuum flange
- Operating fluid P3 (for standard pump)
- Operating instructions

Pump types

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Pump versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hena 200</td>
<td>Standard version of pump</td>
</tr>
<tr>
<td></td>
<td>● Vacuum and exhaust flange: DN 100 ISO-K</td>
</tr>
<tr>
<td></td>
<td>● Operating fluid return unit via float valve</td>
</tr>
<tr>
<td></td>
<td>● Pressure gauge (manometer) for pressure control in the operating fluid separator</td>
</tr>
<tr>
<td></td>
<td>● Three-phase motors with 3 PTC motor protection</td>
</tr>
<tr>
<td></td>
<td>● Gas ballast valve</td>
</tr>
<tr>
<td>Hena 300</td>
<td>Standard version of pump</td>
</tr>
<tr>
<td></td>
<td>● Vacuum and exhaust flange: DN 100 ISO-K</td>
</tr>
<tr>
<td></td>
<td>● Operating fluid return unit via float valve</td>
</tr>
<tr>
<td></td>
<td>● Pressure gauge (manometer) for pressure control in the operating fluid separator</td>
</tr>
<tr>
<td></td>
<td>● Three-phase motors with 3 PTC motor protection</td>
</tr>
<tr>
<td></td>
<td>● Gas ballast valve</td>
</tr>
</tbody>
</table>
4.2 Function

The HenaLine™ series pumps are oil-sealed, single stage operating rotary vane pumps with air cooling and circulatory lubrication. A vacuum safety valve in the intake flange closes the intake line automatically and prevents operating fluid back-streaming when the pump is switched off. The outlet is via an operating fluid separator (ONF) with integrated oil mist filter. In addition there is a filter in the operating fluid separator, which cleans the operating fluid (dependent on the pump model).

Oil circulation

The vacuum pump requires operating fluid for sealing the gap, for lubrication and for cooling. The operating fluid reservoir is on the pressure side of the vacuum pump on the floor of the operating fluid separator. The pressure differential between the pressure side and suction side automatically causes operating fluid to be sucked in over the supply lines from the operating fluid separator and feed into the pumping system. The incoming operating fluid, together with the incoming gas, is pumped through the vacuum pump and exhausted into the operating fluid separator as oil mist. Operating fluid that is separated at the exhaust filters collects in the upper part of operating fluid separator 75 and is returned via operating fluid return line 195 directly to the intake side (vacuum flange 1). Operating fluid that is separated in front of the exhaust filters collects on the floor of the lower chamber of operating fluid separator 75.

Cooling

The vacuum pump is cooled by heat radiation from the surface of the vacuum pump, the air flow of the two fan impellers, and by the pumped gas.

4.3 Range of application

The vacuum pump is intended for the evacuation of air or other non-aggressive, non-poisonous and non-explosive gases. Pumping media with a higher density than air results in a higher thermal and mechanical load on the vacuum pump and the drive, and is only permitted after prior consultation with Pfeiffer Vacuum.
5 Installation

5.1 Setting up the pump

Installation location

- Consider the load-bearing capacity of the installation site.
- Maximum installation altitude 1000 m (above mean sea level)
- Permissible ambient temperature: +12 ... 40°C
- Maximum relative humidity 95%

⇒ Fill up with operating fluid before operating the first time (see p. 14, chap.).
 - Amount and type according to rating plate
⇒ Always place the pump on a firm, even surface.
 - Where stationary installation is involved, anchor the pump on site.
⇒ When installing the pump in a closed housing, ensure there is sufficient air circulation.
 - Sightglass and gas ballast valve must be visible and readily accessible.
 - Voltage and frequency information given on the motor rating plate must be visible.

Fig. 2: Setting up the pump
5.2 Connecting the vacuum side

- Remove locking cap from the vacuum flange and insert centering ring.
- The connection between the pump and the recipient should be kept as short as possible.
 - Depending on the pump type, use metallic hoses or PVC hoses with flange connections.
 - Separators, filters etc. may be installed upstream to protect the pump (see accessories). However, please observe the loss of pumping capacity due to the conductivity of the accessories.

5.3 Connecting the exhaust side

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>High pressure in the exhaust line!</td>
</tr>
<tr>
<td>Danger of damage to the seals and danger of the pump bursting.</td>
</tr>
<tr>
<td>Install the line without shut-off valves on the exhaust side.</td>
</tr>
<tr>
<td>If there is danger of a build-up of excess pressure (> 1500 mbar abs.) in the lines, observe all official accident prevention safety regulations.</td>
</tr>
</tbody>
</table>

- Choose the cross-section of the exhaust line to be at least the size of the nominal connection diameter of the vacuum pump's exhaust connection.
- Piping to the pump must be suspended or supported.
 - Physical forces from the piping system must not be allowed to act on vacuum pumps.
- Lay piping from the pump sloping downward so that no condensate can flow back into the pump; otherwise fit a condensate separator.
 - If an air trap is created in the system, then a device for draining condensation water must be provided at the lowest point.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission of toxic substances from the exhaust!</td>
</tr>
<tr>
<td>Danger of poisoning from emitted gases or vapours, which can be detrimental to health and/or can pollute the environment, depending on the particular application.</td>
</tr>
<tr>
<td>Comply with the applicable regulations when working with toxic substances.</td>
</tr>
<tr>
<td>Only officially approved filter systems may be used to separate and remove these substances.</td>
</tr>
</tbody>
</table>
5.4 Connecting to the mains power supply

Depending on the pump type, different motor versions or mains voltages are possible:

- Three phase motor (with 3 PTC) without switch and mains cable.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage-bearing elements</td>
</tr>
<tr>
<td>Danger to life from electric shock.</td>
</tr>
<tr>
<td>➔ The electrical connection can be carried out only by trained and authorised electricians.</td>
</tr>
<tr>
<td>➔ Disconnect the power supply and secure it against being switched back on.</td>
</tr>
<tr>
<td>➔ Ensure the system is adequately earthed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess voltage!</td>
</tr>
<tr>
<td>Danger of destroying the motor.</td>
</tr>
<tr>
<td>➔ Power connections must comply with local regulations. Voltage and frequency information given on the motor rating plate must correspond to the mains voltage and frequency values.</td>
</tr>
<tr>
<td>➔ To protect the motor and supply cable in case of malfunction, mains fuse protection must be implemented.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger of injury from moving parts!</td>
</tr>
<tr>
<td>After power failure or motor shutdown due to overheating, the motor may restart automatically.</td>
</tr>
<tr>
<td>➔ Secure the motor so that it cannot be switched on while any work is being performed on the pump.</td>
</tr>
<tr>
<td>➔ If necessary, dismantle the pump from the installation for inspection.</td>
</tr>
</tbody>
</table>

Three-phase motor

- Inspection of the direction of rotation

With pumps with three-phase motors is it necessary to check the direction of rotation!

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating fluids may leak out!</td>
</tr>
<tr>
<td>If the direction of rotation is incorrect, there is a danger that operating fluids may leak at the vacuum flange.</td>
</tr>
<tr>
<td>➔ Always check the direction of rotation before filling in operating fluid.</td>
</tr>
<tr>
<td>➔ Remove the locking cap from the exhaust flange (if existing).</td>
</tr>
<tr>
<td>➔ Switch the pump on briefly (from 2 to 3 sec.).</td>
</tr>
<tr>
<td>➔ Rotation must be in a clockwise direction in view of the shaft end of the motor (see the arrow on the fan cover).</td>
</tr>
<tr>
<td>➔ If the direction of rotation is incorrect: Swap two phase contacts at the connecting cable.</td>
</tr>
<tr>
<td>➔ Fill up the operating fluid.</td>
</tr>
</tbody>
</table>

Motor protection

Pump motors equipped with PTC temperature sensors (3PTC) in the stator windings can be connected to a PTC resistor tripping device for protection against overload. Other approved motor temperature monitoring can be used also by the operator.

Tripping devices store the shutdown event and need to be manually switched back on again via the integrated RESET button or via the external RESET S3. Mains-ON is detected as an automatic RESET.
Set up the connections so that the directional rotation indicated on the pump is maintained, regardless of the representations in the current flow diagram.

![Diagram of the connection example for a three-phase AC motor with PTC resistor tripping device](image)

Fig. 3: Connection example for a three-phase AC motor with PTC resistor tripping device

NOTE

Do not start with star/delta connection.

Always start motor directly.

The three phase current motor circuit

Delta Connection

The three coils are connected in series with the connection point connected to the mains. The voltage of each coil is the same as the mains voltage whereas the mains current is the cube root of the coil current. Delta connections are denoted by the symbol Δ. The voltage between the mains supply lines is called mains voltage. The mains current is the current which flows in the supply lines.

![Diagram of the motor coil and connecting plate of Delta Connection (for low voltage)](image)

Star Connection

The ends of the three coils are connected at the star center. The terminal voltage is the cube root of the coil voltage; the mains and the coil current are the same. Star connections are denoted by the symbol Y.

![Diagram of the motor coil and connecting plate of Star Connection (for high voltage)](image)
5.5 Filling up the operating fluid

The type and amount of operating fluid should be visible on the pump’s rating plate for every rotary vane pump.

The delivery consignment for the standard pump contains sufficient operating fluid for one filling. The use of other operating fluids requires prior authorisation from Pfeiffer Vacuum.

Permissible operating fluid

- P3 (standard operating fluid)
- Operating fluid for special applications on request

| NOTE |
| Use approved operating fluids only! |

The use of operating fluids that have not been approved by Pfeiffer Vacuum shall result in a limited warranty. In such cases, it is not possible to guarantee that product-specific performance data will be achieved.

Prior consultation is required before using other application-specific operating fluids.

Filling up the operating fluid

- Unscrew operating fluid filler screw 88.
- Fill up with operating fluid to the middle of the sight glass.
 - Filling quantity approx. 6.5 l of operating fluid.

Fig. 6: Filling up the operating fluid

- Screw in operating fluid filler screw 88.
- Close intake port valve (if present) or cover intake flange with a rubber mat.
- Start pump and run it for max. 5 minutes.
- Switch off pump and wait until the operating fluid has collected in the separator box.
- Check fill level: The correct fill level is between the markings on the sight glass.
 - If the fill level drops below the "Min" marking, add operating fluid.
- Open intake port valve.

5.6 Operating fluid temperature monitoring (option)

A temperature switch 488, which is installed at the operating fluid separator (oil sump) is used for monitoring the operating fluid temperature.

Electrical connection of the temperature switch 488 must be carried out, so that an alarm is released and the pump is switched off, if the operating fluid temperature exceeds 100°C. The temperature switch is preset ex works.
5.7 Operating fluid level monitoring (option)

A level switch 4, which is installed at the operating fluid separator (oil sump) is used for monitoring the operating fluid level.

![Operating fluid temperature and level monitoring](image)

5.8 Connecting the heat exchanger (option)

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to the pump rotor</td>
</tr>
</tbody>
</table>

For applications with short evacuating cycles or increased ambient temperature the rotor can get blocked after switching off and restarting the motor, because of different rates at which the pump housing and the rotor cool down.

Switch off water cooling supply as well as a separately driven fan immediately when switching off the pump.

With applications with unfavorable environmental conditions additionally an oil/water heat exchanger can be used. The installation can take place only in the work and is later not possible.

A cooling water regulator valve 10.7 controls by means of a temperature sensor the operating fluid of the pump and controls the cooling water flow. Depending on the operating conditions the cooling water flow can be adjusted between 0 (maximum flow) and position 5 (minimum flow).

A solenoid valve controls the cooling water inlet and stops the flow during operating interrupt of the pump.

Additionally the cooling water pressure can be monitored with a pressure switch 10.4.

![Connecting the heat exchanger](image)
Installation

Requirements for the cooling water

The cooling water must be filtered in all cases. This keeps dirt deposits and organic suspended particles that could accelerate pitting out of the cooling circuit. Complying with the following requirements for cooling water will prevent corrosion damage:

<table>
<thead>
<tr>
<th>Requirements for the cooling water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water filtered, mechanically pure, optically clear, no turbidity, no sediments, chemically neutral</td>
</tr>
<tr>
<td>Min. oxygen content</td>
</tr>
<tr>
<td>Max. chloride content</td>
</tr>
<tr>
<td>Max. carbonate hardness for the water temperatures</td>
</tr>
<tr>
<td>15 ... 25 °C</td>
</tr>
<tr>
<td>30 ... 40 °C</td>
</tr>
<tr>
<td>60 ... 80 °C</td>
</tr>
<tr>
<td>Max. potassium permanganate usage</td>
</tr>
<tr>
<td>pH value</td>
</tr>
<tr>
<td>Aggressive carbon dioxide and ammonia must not be detectable</td>
</tr>
<tr>
<td>Max. electrical conductivity</td>
</tr>
<tr>
<td>Max. impurity particle size</td>
</tr>
<tr>
<td>Permitted inlet overpressure range; if the pressure is higher a pressure reducer valve must be integrated</td>
</tr>
<tr>
<td>Required pressure differential between inlet and outlet</td>
</tr>
<tr>
<td>Permitted cooling water temperature range</td>
</tr>
</tbody>
</table>

Connecting the cooling water

- Connect the cooling water lines:
 - Cooling water inlet (10.1).
 - Cooling water outlet (10.2); must be pressure-free.
- Open the cooling water feed.
- Open the venting screw 10.5 and fill the cooling system until cooling water comes out of the outlet.
- Close venting screw 10.5.
- Connect cooling water line at the outlet.
- Stop cooling water supply.
6 Operation

6.1 Before switching on

- Check the operating fluid level in the sightglass.
- Compare the voltage and frequency information on the rating plate with the mains voltage and frequency values.
- Check that the exhaust connection allows free flow (max. permissible pressure 1.5 bar absolute).
 - Activate the shut-off valves in such a way that they open before or at the same time as the pump is started.
- Protect the pump sufficiently from taking in contaminants by means of suitable precautions (e.g. dust filters); if necessary, check operating fluid regularly or replace at shorter intervals.
- Open cooling water supply and check the flow; adjust if necessary.

6.2 Switching on the pump

The pump can be switched on in any pressure range between atmospheric and ultimate pressure.

No special precautions are necessary when pumping dry gases. In order to attain the lowest possible ultimate pressures, the gas ballast valve should be closed.

<table>
<thead>
<tr>
<th>Permissible operating conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type / Version</td>
</tr>
<tr>
<td>Hena 200/300</td>
</tr>
</tbody>
</table>

Operating fluid return via float valve

The pumps are fitted with an automated operating fluid return system via intake flange 1 as standard. If the fluid level in the operating fluid separator 75 reaches a definite level, the float valve returns collected operating fluid to the pump via oil return line 290 by means of differential pressure. As the float valve only opens temporarily there is no important decline of the ultimate pressure.
6.3 Pumping condensable vapours

Should the process gases contain condensable gases present at high percentages, the rotary vane pump must be operated with gas ballast (i.e. with an open gas ballast valve).

CAUTION

Bad final vacuum and damage to the pump!

Danger of condensation and corrosion due to exceeding the water vapour compatibility during operation without gas ballast or in case of insufficient supply of flushing gas.

- Only pump vapours when the pump is warm and the gas ballast valve is open.
- When the process has been completed, allow the pump to continue running for about 30 minutes with the vacuum flange closed and the gas ballast open for operating fluid regeneration purposes.

Pumping condensable vapours

To avoid condensation in the pump when pumping condensable vapours, air is periodically fed into the working chamber at the beginning of the compression phase via the gas ballast valve 477.

The gas ballast valve is closed when turning to the right to position 0 and open when turning to the left to position 1. Intermediate settings are not possible.
6.4 Switching off the pump

The pump can be switched off in any pressure range.

Rotary vane pumps have an integrated safety valve on the intake side. If the differential pressure between the exhaust side and the intake side is ≥ 250 mbar, then the valve closes automatically and vents the pump when the pump is switched off.

➔ Switch the pump off at the mains switch or disconnect from the mains in a secure manner.

Venting the vacuum chamber

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger of backflow of operating fluid into the intake line!</td>
</tr>
<tr>
<td>Contamination of the connected vacuum system!</td>
</tr>
</tbody>
</table>
➔ Vent the vacuum chamber within 30 s, regardless of the chamber size.
➔ For a longer venting process, use an additional shut-off valve and shut off the intake line after switching off the pump.

Maintaining the vacuum in the chamber

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger of backflow of operating fluid into the intake line!</td>
</tr>
<tr>
<td>Contamination of the connected vacuum system!</td>
</tr>
</tbody>
</table>
➔ Because the safety valve of the pump is not suitable for longer-term sealing, install an additional shut-off valve in the intake line.
➔ Shut off the intake line immediately after switching off the pump.
7 Maintenance

7.1 Precautions

WARNING

Danger of injury from moving parts!
After power failure or motor shutdown due to overheating, the motor may restart automatically.

- Secure the motor so that it cannot be switched on while any work is being performed on the pump.
- If necessary, dismantle the pump from the installation for inspection.

WARNING

Pump parts may be contaminated from pumped media!
Danger of poisoning due to contact with harmful substances.

- Decontaminate the pump before carrying out any maintenance work.
- In the event of contamination, take suitable safety precautions to prevent your health from being harmed by any dangerous substances.

- Turn off the vacuum pump, vent to atmospheric pressure and allow to cool, if necessary.
- Disconnect the drive motor from the mains and secure it so that it cannot be switched on.
- Only dismantle the pump as far as necessary in order to repair defects.
- Dispose of used operating fluid in compliance with local regulations.
- When using synthetic operating fluids or working with toxic substances or substances contaminated with corrosive gases, the relevant instructions governing their use must be observed.
- Use only alcohol or similar agents for cleaning pump parts.

NOTE

Service work should be carried out by qualified personal only!
Pfeiffer Vacuum is not liable for any damage to the pump resulting from work carried out improperly.

- Take advantage of our service training programs; additional information at www.pfeiffer-vacuum.com.
- Please state all the information on the pump rating plate when ordering spare parts.
Certain repair and overhaul work should only be performed by Pfeiffer Vacuum Service (PV). Pfeiffer Vacuum will be released from all warranty and liability claims if the required intervals for inspection, maintenance, or overhaul are exceeded or inspection, maintenance, repair or overhaul procedures are not performed properly. This also applies if replacement parts other than Pfeiffer Vacuum OEM replacement parts are used.

7.2 Changing the operating fluid

The changing interval for the operating fluid depends on the pump applications, but should be carried out once a year.

NOTE

Depending on the applications, Pfeiffer Vacuum recommends determining the exact service life of the operating fluid during the first year of operation.

The replacement interval may vary from the guide value specified by Pfeiffer Vacuum depending on the thermal and chemical loads, and the accumulation of suspended particles and condensation in the operating fluid.

- The level of deterioration of operating fluid P3 can be determined for clean processes with the colour scale (in accordance with DIN 51578); supplementary sheet PK 0219 BN on request or download it from the Internet.
- Suck off operating fluid from the pump through the operating fluid filler opening.
- Fill the specimen in a test tube or some similar vessel and test by holding against the light.
- Where discolouration is dark yellow to red brown (equivalent to 4 ... 5 on the scale) change operating fluid.
- Switch off the pump.
- Unscrew operating fluid filler screw 88.
- Unscrew operating fluid drain screw 95.
Fig. 9: Filling up the operating fluid

WARNING

Hot operating fluid!
Danger of burns when draining due to contact with skin.

➔ Wear suitable protective clothing.
➔ Use a suitable collecting vessel.

WARNING

Operating fluid may contain toxic substances from the pumped media!
Danger of poisoning from the emission of harmful substances from the operating fluid.

➔ Wear suitable protective clothing and respirators.
➔ Dispose of operating fluid according to the local regulations.

➔ Screw in operating fluid drain screw 95; pay attention to O-ring.
➔ Screw in operating fluid filler screw 88.
➔ Allow pump to run for a maximum of 5 seconds with the vacuum flange open.
➔ Drain off remaining operating fluid.

– In case of serious contamination, the operating fluid will have to be changed several times (flushing):

Flushing

➔ Fill up with operating fluid to the middle of the sight glass.
➔ Operate the pump with the gas ballast open until the pump has warmed up.
➔ Drain the operating fluid again and check for contamination, flush again if necessary.
➔ Screw the operating fluid drain screw back in.
➔ Fill up with operating fluid and check the filling level (see p. 14, chap.).

NOTE

Request safety data sheets for operating fluids and lubricants from Pfeiffer Vacuum or download them from the Internet.

➔ Dispose of operating fluid according to the local regulations.

Changing the operating fluid filter

Operating fluid filter 100 should be replaced at every operating fluid change but at least once every six months. It is also necessary to replace the filter when the pump is on operating temperature and the filter housing is cold.

➔ Allow the pump to warm up for a minimum of 15 minutes before replacing the filter.
➔ Switch off the pump.
Drain off operating fluid.
Unscrew operating fluid filter with a spanner and replace.
Oil the sealed surface of the replacement filter before fitting.
Screw in the filter manually; do not use tools.

7.3 Changing the exhaust filter in the operating fluid separator

Exhaust filters 120 in operating fluid separator 75 should be replaced, depending on the application and level of contamination, however at least once every year. It is recommended to replace also the respective O-rings 121.

During operation, the exhaust filters become saturated with oil. It is therefore normal for the operating fluid fill level to sink slightly after the filters are changed.

Indications for a filter replacement:
- Increased expulsion of operating fluid mist from the exhaust flange.
- Increased power consumption.
- Increased pressure in the operating fluid separator 75 (red area at the display of the pressure gauge).

WARNING

Exhaust air filter may contain toxic substances from the pumped media!
Danger of poisoning from the emission of harmful substances (radioactive, toxic, etc.) from the filter and the operating fluid.
Wear suitable protective clothing and respirators.
Dispose of consumables supplies according to the local regulations.
Dismantling

- Turn off the vacuum pump, vent to atmospheric pressure and allow to cool, if necessary.
- Remove exhaust line.
- Unscrew screws 142 from separator cover 140; take care with the spring washer 143!
- Remove separator cover 140.
- Remove fixing bolt 137.
- Remove grid 136 and filter 130.
- Remove nut 134 and washer 132.
- Remove exhaust filter unit and filter support 118 from the separator box and set down on an even, clean surface.
 Undo screws 126 and lock washers 128 and clamping plate 115.

Assembling
- Insert new exhaust filter with new O-rings 119 into filter support 118; observe direction of arrow on the exhaust filter.
- Fit clamping plate 115 and tighten the two screws 126; ensure pipe 133 is correctly seated.
- Fit pre-mounted waste air filter unit into separator box; observe guide on stud screw 131.
- Fit washer 132 and tighten hexagon nut 134.
- Replace grid 136 and filter 130 and insert into the guide rail of the separator box;
 - Push filter material onto the floor and make sure it is in contact with all sides of the separator box.
- Insert fixing bolt 137 into the guide notch.
- Check filter 557 in threaded flange; replace if necessary.
- Install separator cover 140, ensure that flat seal 141 is clean and undamaged; exchange if necessary.

7.4 Cleaning the float valve
The float valve (1x) must be checked and cleaned each time the operating fluid is changed.
- Drain off operating fluid.
- Undo the two screws 247 and remove the protective cover 244 above fan impellers.
- Remove lock washer 326 and fan 321.
- Undo screws 238 and 353 and remove lock washers.
- Remove cooler 241.
- Check O-rings 242 and replace if necessary.
- Undo the two fixing screws 198 on the float valve and remove the entire unit.
- Undo set screw 196 and remove float valve 194; check for functioning and clean with compressed air if necessary.
- Check O-ring 197 and replace if necessary.
- Refit float valve 194; pay attention to proper mounting orientation.
7.5 Changing the intake filter

The intake filter, located in the upper part of the intake flange must be cleaned when the intake throughput reduces.

- Unscrew screws 265 from the vacuum flange and dismantle flange
- Remove intake sieve 261 from the intake port and clean it.
- When cleaning the sieve it is recommended to clean the vacuum safety valve at the same time and check it for wear and tear.

7.6 Changing the gas ballast filter

The gas ballast filter is used to keep the air free of particles before entering the suction chamber.

- Check gas ballast valve and line for free flow.
- If no further air is sucked in, dismount gas ballast filter 474 and blow out with compressed air.

7.7 Cleaning the fan covers and radiator

Contamination prevents the flow of cool air and can lead to the vacuum pump overheating.

- Check cooler, ventilator cowl and motor cover for dirt on a regular basis; clean, if necessary.
8 Decommissioning

8.1 Shutting down for longer periods
Before shutting down the pump, observe the following procedure and adequately protect the pump system against corrosion:

¬ Switch off the pump.
¬ Change the operating fluid (see p. 21, chap. 7.2).
¬ Start the pump and allow the pump to warm up with closed vacuum flange and with open gas ballast valve.
¬ Close gas ballast valve.
¬ Blow compressed air through the cooling water system and completely empty cooling water channels to avoid rust and frost damage.

8.2 Re-starting

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission of operating fluid!</td>
</tr>
<tr>
<td>Danger of the operating fluid being emitted at the exhaust flange if overfilled.</td>
</tr>
<tr>
<td>➔ Drain the operating fluid to the normal level before restarting the pump.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-starting</td>
</tr>
<tr>
<td>The serviceability of the operating fluid without operation is a maximum of 2 years. Before re-starting after a shut-down of 2 years or longer, carry out the following work.</td>
</tr>
<tr>
<td>➔ Replace the operating fluid.</td>
</tr>
<tr>
<td>➔ Replace the radial shaft sealing rings and further elastomer parts.</td>
</tr>
<tr>
<td>➔ Replace bearings at pumps with anti-friction bearings.</td>
</tr>
<tr>
<td>➔ Follow the maintenance instructions and inform Pfeiffer Vacuum.</td>
</tr>
</tbody>
</table>

8.3 Disposal
Products or parts thereof (mechanical and electrical components, operating fluids, etc.) may cause environmental burden.

¬ Safely dispose of the materials according to the locally applicable regulations.

9 Malfunctions
Please note the following instructions should the pump malfunction:

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot surface!</td>
</tr>
<tr>
<td>Danger of burns if hot parts are touched. The surface temperature of the pump may rise above 105 °C in case of malfunction.</td>
</tr>
<tr>
<td>➔ Carry out work on the pump only after it has cooled to a safe temperature.</td>
</tr>
</tbody>
</table>
NOTE

Motor overload!
Depending on the malfunction (e.g. blocking during cold start), the motor may not be sufficiently protected by the built-in thermal protection switch from damage through overheating.

⇒ Implement an additional network safety device.

9.1 Rectifying malfunctions

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible causes</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump will not start up</td>
<td>No mains voltage or voltage does not correspond to the motor data</td>
<td>Check mains voltage and mains fuse protection; check motor switch</td>
</tr>
<tr>
<td></td>
<td>Pump temperature too low</td>
<td>Warm up pump to > 12°C</td>
</tr>
<tr>
<td></td>
<td>Thermal protection switch has responded</td>
<td>Detect and fix cause of overheating; allow pump to cool off if necessary.</td>
</tr>
<tr>
<td></td>
<td>Pump system dirty</td>
<td>Clean pump; contact Pfeiffer Vacuum Service if necessary.</td>
</tr>
<tr>
<td></td>
<td>Pump system damaged</td>
<td>Clean and overhaul pump; contact Pfeiffer Vacuum Service if necessary.</td>
</tr>
<tr>
<td></td>
<td>Motor defective</td>
<td>Replace motor</td>
</tr>
<tr>
<td>Pump switches off after a while after being started</td>
<td>Thermal protection switch of the motor has responded</td>
<td>Detect and fix cause of overheating; allow motor to cool off if necessary.</td>
</tr>
<tr>
<td></td>
<td>Mains fuse protection triggered due to overload (e.g. cold start)</td>
<td>Warm up pump</td>
</tr>
<tr>
<td></td>
<td>Exhaust pressure too high</td>
<td>Check opening of exhaust line and exhaust accessories</td>
</tr>
<tr>
<td>Pump does not attain ultimate pressure</td>
<td>Measurement reading is false</td>
<td>Check gauge, check ultimate pressure without installation connected.</td>
</tr>
<tr>
<td></td>
<td>Pump or connected accessories are dirty</td>
<td>Clean pump and check components for contamination.</td>
</tr>
<tr>
<td></td>
<td>Operating fluid dirty</td>
<td>Operate pump for a longer period with gas ballast valve open or change operating fluid</td>
</tr>
<tr>
<td></td>
<td>Leak in system</td>
<td>Repair leak</td>
</tr>
<tr>
<td></td>
<td>Operating fluid filling level too low</td>
<td>Top off operating fluid</td>
</tr>
<tr>
<td></td>
<td>Pump damaged</td>
<td>Contact Pfeiffer Vacuum Service.</td>
</tr>
<tr>
<td>Pumping speed of pump too low</td>
<td>Intake line not well-dimensioned</td>
<td>Keep connections as short as possible and see that cross-sections are sufficiently dimensioned</td>
</tr>
<tr>
<td></td>
<td>Exhaust pressure too high</td>
<td>Check opening of exhaust line and exhaust accessories</td>
</tr>
<tr>
<td>Loss of operating fluid</td>
<td>Operating fluid separator leaky</td>
<td>Check tightness; replace gasket if necessary</td>
</tr>
<tr>
<td></td>
<td>Radial shaft seal rings leaky</td>
<td>Replace seal ring and check bushing</td>
</tr>
<tr>
<td>Operational loss of operating fluid</td>
<td>Check the oil return unit</td>
<td></td>
</tr>
<tr>
<td>Unusual operating noises</td>
<td>Silencer dirty</td>
<td>Clean or replace the silencer.</td>
</tr>
<tr>
<td></td>
<td>Damage to the pump system</td>
<td>Clean and overhaul pump; contact Pfeiffer Vacuum Service if necessary.</td>
</tr>
<tr>
<td></td>
<td>Motor bearing defective</td>
<td>Replace motor; contact Pfeiffer Vacuum Service if necessary</td>
</tr>
</tbody>
</table>

NOTE

Service work should be carried out by qualified personal only!
Pfeiffer Vacuum is not liable for any damage to the pump resulting from work carried out improperly.

⇒ Take advantage of our service training programs; additional information at www.pfeiffer-vacuum.com.
⇒ Please state all the information on the pump rating plate when ordering spare parts.
10 Service

Pfeiffer Vacuum offers first-class service!
- Maintenance/repairs on site by Pfeiffer Vacuum field service
- Maintenance/repairs in a nearby service center or service point
- Fast replacement with exchange products in mint condition
- Advice on the most cost-efficient and quickest solution

Detailed information and addresses at: www.pfeiffer-vacuum.com (Service).

Maintenance and repairs in Pfeiffer Vacuum ServiceCenter

The following steps are necessary to ensure a fast, smooth servicing process:
- Download the forms "Service Request" and "Declaration on Contamination". 1)
- Fill out the "Service Request" form and send it by fax or e-mail to your
- Pfeiffer Vacuum service address.
- Include the confirmation on the service request from Pfeiffer Vacuum with your ship-
- ment.
- Fill in the contamination declaration and enclose it in the shipment (required!).
- Dismantle all accessories.
- Drain operating fluid/lubricant.
- Drain cooling medium, if used.
- Send the pump or unit in its original packaging if possible.

Sending of contaminated pumps or devices

No units will be accepted if they are contaminated with micro-biological, explosive or ra-
dioactive substances. "Hazardous substances" are substances and compounds in ac-
cordance with the hazardous goods directive (current version). If pumps are contaminat-
ed or the declaration on contamination is missing, Pfeiffer Vacuum performs
decontamination at the shipper's expense.
- Neutralise the pump by flushing it with nitrogen or dry air.
- Close all openings airtight.
- Seal the pump or unit in suitable protective film.
- Return the pump/unit only in a suitable and sturdy transport container and send it in
while following applicable transport conditions.

Service orders

All service orders are carried out exclusively according to our repair conditions for vacu-
um units and components.

1) Forms under www.pfeiffer-vacuum.com
11 Spare parts

Fig. 13: Exploded view Hena 200/300

XX*: nur für Ausführung Hena 300
version Hena 300 only

Gasballast Einzelteile
gas ballast components
11.1 Spare parts packages

<table>
<thead>
<tr>
<th>Spare parts package</th>
<th>Pump type</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set of seals</td>
<td>Hena 200</td>
<td>PK E60 022 -T</td>
</tr>
<tr>
<td>Maintenance kit</td>
<td>Hena 200</td>
<td>PK E61 022 -T</td>
</tr>
<tr>
<td>Overhaul kit</td>
<td>Hena 200</td>
<td>PK E62 024 -T</td>
</tr>
<tr>
<td>Set of vanes</td>
<td>Hena 200</td>
<td>PK E68 024 -T</td>
</tr>
<tr>
<td>Pressure gauge for exhaust pressure control</td>
<td>Hena 200</td>
<td>PK 100 127</td>
</tr>
<tr>
<td>Operating fluid filter</td>
<td>Hena 200</td>
<td>P 0920 591 E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spare parts package</th>
<th>Pump type</th>
<th>Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set of seals</td>
<td>Hena 300</td>
<td>PK E60 023 -T</td>
</tr>
<tr>
<td>Maintenance kit</td>
<td>Hena 300</td>
<td>PK E61 022 -T</td>
</tr>
<tr>
<td>Overhaul kit</td>
<td>Hena 300</td>
<td>PK E62 025 -T</td>
</tr>
<tr>
<td>Set of vanes</td>
<td>Hena 300</td>
<td>PK E68 025 -T</td>
</tr>
<tr>
<td>Pressure gauge for exhaust pressure control</td>
<td>Hena 300</td>
<td>PK 100 127</td>
</tr>
<tr>
<td>Operating fluid filter</td>
<td>Hena 300</td>
<td>P 0920 591 E</td>
</tr>
</tbody>
</table>

12 Accessories

<table>
<thead>
<tr>
<th>Designation</th>
<th>Hena 200</th>
<th>Hena 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS 100, DN 100 ISO-K, polyester filter</td>
<td>PK Z60 512</td>
<td>PK Z60 512</td>
</tr>
<tr>
<td>Operating fluid level monitoring</td>
<td>PK 100 116</td>
<td>PK 100 116</td>
</tr>
<tr>
<td>Barreter actuation unit 3TF</td>
<td>P 4768 051 FQ</td>
<td>P 4768 051 FQ</td>
</tr>
<tr>
<td>P3, mineral oil, 1 l</td>
<td>PK 001 106-T</td>
<td>PK 001 106-T</td>
</tr>
<tr>
<td>P3, mineral oil, 5 l</td>
<td>PK 001 107-T</td>
<td>PK 001 107-T</td>
</tr>
<tr>
<td>P3, mineral oil, 20 l</td>
<td>PK 001 108-T</td>
<td>PK 001 108-T</td>
</tr>
<tr>
<td>P3, mineral oil, 50 l</td>
<td>PK 001 109-T</td>
<td>PK 001 109-T</td>
</tr>
<tr>
<td>P3, mineral oil, 200 l</td>
<td>PK 001 110-T</td>
<td>PK 001 110-T</td>
</tr>
</tbody>
</table>

Further detailed accessories are contained in the Pfeiffer Vacuum printed or Online Catalogue.
13 Technical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hena 200</th>
<th>Hena 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange (in)</td>
<td>DN 100 ISO-K</td>
<td>DN 100 ISO-K</td>
</tr>
<tr>
<td>Flange (out)</td>
<td>DN 100 ISO-K</td>
<td>DN 100 ISO-K</td>
</tr>
<tr>
<td>Pumping speed at 50 Hz</td>
<td>200 m³/h</td>
<td>300 m³/h</td>
</tr>
<tr>
<td>Pumping speed at 60 Hz</td>
<td>240 m³/h</td>
<td>360 m³/h</td>
</tr>
<tr>
<td>Ultimate pressure with gas ballast</td>
<td>0.7 mbar</td>
<td>0.7 mbar</td>
</tr>
<tr>
<td>Ultimate pressure without gas ballast</td>
<td>0.3 mbar</td>
<td>0.3 mbar</td>
</tr>
<tr>
<td>Nominal rotation speed at 50 Hz</td>
<td>1500 rpm</td>
<td>1500 rpm</td>
</tr>
<tr>
<td>Nominal rotation speed at 60 Hz</td>
<td>1800 rpm</td>
<td>1800 rpm</td>
</tr>
<tr>
<td>Emission sound pressure level without gas ballast at 50 Hz</td>
<td>72 dB (A)</td>
<td>74 dB (A)</td>
</tr>
<tr>
<td>Emission sound pressure level without gas ballast at 60 Hz</td>
<td>74 dB (A)</td>
<td>76 dB (A)</td>
</tr>
<tr>
<td>Relative humidity of air</td>
<td>95 %</td>
<td>95 %</td>
</tr>
<tr>
<td>Rated power 50 Hz</td>
<td>5.5 kW</td>
<td>8.3 kW</td>
</tr>
<tr>
<td>Rated power 60 Hz</td>
<td>6.3 kW</td>
<td>10 kW</td>
</tr>
<tr>
<td>Mains requirement: voltage 60 Hz</td>
<td>220-230/440-460 V</td>
<td>220-230/440-460 V</td>
</tr>
<tr>
<td>Switch</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Altitude of site, max</td>
<td>1000 m</td>
<td>1000 m</td>
</tr>
<tr>
<td>Exhaust pressure, max.</td>
<td>1500 abs. mbar</td>
<td>1500 abs. mbar</td>
</tr>
<tr>
<td>Exhaust pressure, min.</td>
<td>1000 abs. mbar</td>
<td>1000 abs. mbar</td>
</tr>
<tr>
<td>Leak rate safety valve</td>
<td>0.08 mbar l/s</td>
<td>0.08 mbar l/s</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>12-40 °C</td>
<td>12-40 °C</td>
</tr>
<tr>
<td>Operating fluid filling</td>
<td>6.5 l</td>
<td>6.5 l</td>
</tr>
<tr>
<td>Weight</td>
<td>162 kg</td>
<td>228 kg</td>
</tr>
</tbody>
</table>
13.1 Dimensions

Fig. 14: Hena 200

(...): motor efficiency class IE2
Fig. 15: Hena 300

DN 100 ISO-K

±1.5

±1.5

15

48

350

418

315

447

334

342

303\textpm15

390

127

15

256

350\textpm15

417

1081 (1087)

1076 (1072)

(...): motor efficiency class IE2
Declaration of conformity

according to the EC directive:

● Machinery 2006/42/EC (Annex II, no. 1 A)

We hereby declare that the product cited below satisfies all relevant provisions of EC directive "Machinery" 2006/42/EC.

In addition, the product cited below satisfies all relevant provisions of EC directive "Electromagnetic Compatibility" 2004/108/EC.

The agent responsible for compiling the technical documentation is Mr. Sebastian Oberbeck, Pfeiffer Vacuum GmbH, Berliner Straße 43, 35614 Asslar.

HenaLine™
Hena 200/300

Guidelines, harmonised standards and national standards and specifications which have been applied:

DIN EN 1012-2 : 1996 DIN EN 61000-6-1 : 2007
DIN EN ISO 14121-1 : 2007 DIN EN 61000-6-2 : 2006

Signatures:

Pfeiffer Vacuum GmbH
Berliner Straße 43
35614 Asslar
Germany

(M.Bender) (Dr. M. Wiemer) CE/2011
Managing Director Managing Director

PFEIFFER VACUUM
You are looking for a perfect vacuum solution? Please contact us:

Germany
Pfeiffer Vacuum GmbH
Headquarters
Tel.: +49 (0) 6441 802-0
info@pfeiffer-vacuum.de

Benelux
Pfeiffer Vacuum GmbH
Sales & Service Benelux
Tel.: +800-pfeiffer
benelux@pfeiffer-vacuum.de

China
Pfeiffer Vacuum
(Shanghai) Co., Ltd.
Tel.: +86 21 3393 3940
info@pfeiffer-vacuum.cn

France
Pfeiffer Vacuum France SAS
Tel.: +33 169 30 92 82
info@pfeiffer-vacuum.fr

Great Britain
Pfeiffer Vacuum Ltd.
Tel.: +44 1908 500600
sales@pfeiffer-vacuum.co.uk

India
Pfeiffer Vacuum India Ltd.
Tel.: +91 40 2775 0014
pfeiffer@vsnl.net

Italy
Pfeiffer Vacuum Italia S.p.A.
Tel.: +39 02 93 99 05 1
contact@pfeiffer-vacuum.it

Korea
Pfeiffer Vacuum Korea Ltd.
Tel.: +82 31 266 0741
sales@pfeiffer-vacuum.co.kr

Austria
Pfeiffer Vacuum Austria GmbH
Tel.: +43 1 894 17 04
office@pfeiffer-vacuum.at

Sweden
Pfeiffer Vacuum Scandinavia AB
Tel.: +46 8 590 748 10
sales@pfeiffer-vacuum.se

Switzerland
Pfeiffer Vacuum (Schweiz) AG
Tel.: +41 44 444 22 55
info@pfeiffer-vacuum.ch

United States
Pfeiffer Vacuum Inc.
Tel.: +1 603 578 6500
contact@pfeiffer-vacuum.com

Pfeiffer Vacuum stands for innovative and custom vacuum solutions worldwide. For German engineering art, competent advice and reliable services.

Ever since the invention of the turbopump, we’ve been setting standards in our industry. And this claim to leadership will continue to drive us in the future.