Thin Film Deposition System
ALD-150LX™ – Designed for advanced research & development applications
Applications:
- University, Industrial & Government Lab R&D
- Electronics
- MEMS
- Energy Storage
- Solar encapsulation
- Nanophotonics
- Biomedical
Overview
The Kurt J. Lesker Company® (KJLC®) ALD150LX™ is an Atomic Layer Deposition (ALD) system designed specifically for advanced research and development (R&D) applications. Innovative ALD150LX™ design features, like our Patented Precursor Focusing Technology™, blended with advanced process capability provide unparalleled flexibility and performance. With an emphasis on enabling and supporting innovative, cutting edge technology at the R&D level, the ALD150LX™ serves not only as a stand-alone platform, but provides connectivity with additional process and analysis modules in a cluster tool configuration.
ALD150LX™ cluster tool connectivity eliminates unwanted atmosphere exposure between critical process and analysis steps to protect sensitive surfaces, layers and their interfaces. This connectivity includes the integration of additional ALD and analysis modules, as well as other KJLC® thin film deposition technologies for multi-technique process and analysis capability and support that are second-to-none in the industry. Combined quality, flexibility and performance, as well as multi-technique process and analysis capability make the ALD150LX™ an innovative, best-in-class design.
Technical Description
Process Chamber
- Thermal or plasma-enhanced (PEALD) configurations
- Perpendicular flow design
- Four separate chamber inlets for precursor delivery (not including plasma)
- Analytical ports for in-situ ellipsometry
- Horizontal substrate loading port (up to 150 mm diameter substrates)
- Independent substrate heater stage
Precursors
- High-performance, remote inductively coupled plasma (ICP) source with up to six plasma gas lines
- Up to fifteen precursor sources with four separate chamber inlets (not including plasma)
- Variety of precursor delivery options are available including vapor draw, flow-through and pulsed gas delivery
- Exposure modes include dynamic, static and Variable Residence Mode™ (VRM™)
- Ozone source
Typical Processes
- Al2O3, TiO2, SiO2, Ta2O5, HfO2, ZrO2, HZO, ZnO, AZO, AIN, TiN, GaN, Pt, and Ru
System Heating
- Independent substrate heater stage capable of up to 500°C operation
- Process chamber and precursor delivery line heating up to 250°C
- Precursor heating up to 200°C
- Delivery Line heating up to 250°C
- Up to 200°C Valve Heating
Software & Controls
- KJLC® eKLipse™ system control software (LabView based)
- Real time controller
- True precision ALD valve timing
Process Pump
- Rotary vane pump (53 cfm) with foreline purge/vent protection and oil filtration
- Dry pump
- Customer supplied process pump
Substrate Transfer
- Manual loading
- Load-Lock (single or multi-wafer cassette)
- Cluster Tool
- Glove Box
Features
Process Chamber

Core Process Chamber - Substrate Heater Stage Details
The ALD150LX™ process chamber can be configured for purely thermal or plasma-enhanced ALD (plasma optional). Our unique perpendicular flow design enables isolated, uniform precursor delivery, and promotes increased precursor utilization as well as mean time between service intervals. To avoid unwanted material buildup and particulate formation inside delivery channels, four separate chamber inlets (not including plasma) are available for precursor isolation. For example, separate inlets can be used to isolate metal organic precursors and co-reactants to prevent deposition in delivery lines and valves.
- Plasma-Enhanced ALD (PEALD) configuration optional
- Analytical ports (70° angle of incidence) for in-situ ellipsometry (ellipsometer optional)
- Four separate inlets for precursor delivery to prevent unwanted buildup in delivery channels
- Independent substrate heater stage and outer chamber casing for excellent temperature control and uniformity
- 304L stainless-steel construction
- Accessible, low maintenance design
Our Patented Precursor Focusing Technology™ (PFT™) combines an inactive curtain gas barrier with centralized precursor delivery and pumping to minimize interactions with process chamber sidewalls, and keep precursors out chamber ports for improved precursor utilization and extended maintenance intervals. Analytical ports for ellipsometer integration are a standard feature on the ALD150LX™ (ellipsometer optional). Substrates (up to 150 mm diameter) are introduced through a horizontal loading port. Once inside a vertical pin lift mechanism is used to complete transfer by picking and placing substrates directly onto the surface of the substrate heater stage.
Precursor Delivery
The base ALD150LX™ system includes two heated, single-source vapor draw modules with two separate chamber inlets (to avoid unwanted buildup in delivery line components), that operate in dynamic or static exposure modes. For the full range of precursor delivery options currently available, please refer to the Options Tab for more information.
Heating
The ALD150LX™ employs superior heating and temperature control that complements our unique PFT™ design by further enhancing overall system performance. In particular, temperature uniformity and control helps to prevent unwanted precursor condensation resulting in parasitic effects that reduce film quality and compromise chamber cleanliness.
Upper temperature Limits for heated system components are as follows:
- Substrate heater stage 500°C
- Chamber and precursor delivery lines 250°C
- Precursors and delivery valves 200°C
- Delivery Line heating up to 250°C
- Up to 200°C Valve Heating
Our unique heater design combined with independent heat zones for precursors, delivery valves and lines, process chamber (multiple zones), substrate heater as well as foreline components provide unparalleled temperature control and uniformity of heated system components.
Options
Plasma Option
The ALD150LX™ plasma option is a fully integrated package that incorporates a high-performance, remote inductively coupled plasma (ICP) source design with up to six plasma gas lines/channels. Typical plasma gases include oxygen, nitrogen and hydrogen. An alternate bypass channel is available for maintaining continuous gas flow during PEALD processing making the need to start-and-stop gas flow optional. Our advanced plasma source design is complimented by our state-of-the-art eKLipse™ software and controls package.
The base plasma option includes the following components:
- Cylindrical dielectric plasma tube with helical inductive coil geometry
- 1 kW power supply operating at 13.56 MHz frequency
- Two plasma gas channels
- Bypass channel for continuous gas flow operation
- Self-supported, detachable auto-matching network
- Compact, modular design for ease of service
Other optional plasma features include:
- Four additional plasma gas channels
- Pump-purge manifold for gas line preparation
- Gas compatibility programmable logic controller (PLC)
An optional manifold is available for gas line preparation (i.e., pumping and purging) prior to charging. This pump-purge manifold provides built-in capacity for preparing gas lines to obtain optimal gas purity. To prevent mixing of incompatible gases (e.g., H2 and O2), a gas compatibility programmable logic controller (PLC) is also available.
Precursor Delivery Options
With up to fifteen precursor sources that utilize four separate chamber inlets (not including plasma), the ALD150LX™ provides extreme process flexibility. Modules are available for gas, liquid and solid phase precursors with a host of delivery options including vapor draw, flow-through and pulsed gas delivery. A fully integrated ozone delivery option is also available. Please contact us for more information regarding our ozone option.
For delivery options that require heating, our unique heater designs combined with independent heat zones for precursors, delivery valves and lines provide unparalleled temperature control and uniformity. Excellent temperature uniformity and control helps to prevent unwanted precursor condensation resulting in parasitic effects that reduce film quality and compromise chamber cleanliness.
Precursor exposure modes include dynamic, static and Variable Residence Mode™. Dynamic and static modes are standard features; Variable Residence Mode™ is optional. Please contact us for more information regarding our Variable Residence Mode™ option. The modular, scalable ALD150LX™ design accommodates a variety of different configurations including future expansion and upgrades.
Single-Source & Multi-Source Vapor Draw Modules
Vapor draw sources are ideal for liquid and solid phase precursors with sufficient vapor pressure such that they do not require any special assistance for effective vapor delivery other than heating. The base ALD150LX™ system includes two heated, single-source vapor draw modules with two separate chamber inlets (standard feature).
- Optional multi-source vapor draw module
- Multi-source module can include up to five vapor draw sources
- ALD150LX™ can accommodate up to two multi-source modules with two separate chamber inlets
- Precursor and delivery valve heating are independently controlled up to 200°C
- Delivery lines are independently controlled to 250°C
- Vapor draw modules feature true precision ALD valve timing for optimal precursor dose control
Flow-Through Vapor Delivery Module
For liquid and solid phase precursors with insufficient/low vapor pressure, flow-through sources provide enhanced vapor delivery. Our unique, modular flow-through design provides added flexibility for advanced low vapor pressure delivery and supports both flow-through and vapor draw methods.
- Fully enclosed oven or independently heated precursor cylinder configurations
- ALD150LX™ can accommodate up to two flow-through modules with two separate chamber inlets
- Precursor and delivery valve heating independently controlled up to 200°C (oven configuration not fully independent)
- Delivery line heating independently controlled to 250°C
- True precision ALD valve timing for optimal precursor dose control
Pulsed Gas Delivery
Pulsed gas options include our Pulsed Gas Source™ (PGS™) delivery module specifically designed for precise, accurate, high-speed dosing of toxic gases (e.g., WF6, HCl, NH3, H2S, etc.). The KJLC® unique PGS™ design utilizes a fixed charge volume (or reservoir) for precursor dosing that eliminates the he need for a mass flow controller for precise, accurate delivery. To control the amount of precursor being delivered, precision ALD valve timing as well as reservoir pressure, are tightly controlled through our eKLipse™ software and controls package to enable high-speed dosing with both precision and accuracy. The ALD150LX™ can accommodate up to two PGS™ modules.
- Designed specifically for precise, accurate high-speed dosing of toxic gases (e.g., WF6, HCl, NH3, H2S, etc.)
- Eliminates the need for mass flow controllers
- Includes separate channel for pumping and purging of input line components
Substrate Transfer Options
Substrates (up to 150 mm diameter) are introduced/removed through a horizontal loading port either manually in atmosphere (using a hand held fixture or mechanical rail assembly), or by automated transfer using a load-lock (single or multi-wafer cassette) or cluster tool configuration that provide a controlled vacuum environment for substrate handling. Glove box options are also available for manual or automated transfer configurations.
Substrate transfer options include the following:
- Manual loading in atmosphere (using a hand held fixture or mechanical rail assembly)
- Automated load-lock transfer (single or multi wafer cassette)
- Cluster tool
- Glove box
Pumping & Pressure Measurement
The standard pump for the ALD150LX™ is a Leybold D65BCS rotary vane pump (53 cfm, PFPE prepared) with optional foreline purge/vent protection and oil filtration. A dry pump with foreline purge/vent protection, as well as a customer supplied pump are optional. A heated (150°C) capacitance manometer measures process chamber pressure.
Standard:
- Leybold D65BCS rotary vane pump, 53 cfm, PFPE prepared
- Heated (150°C) capacitance manometer measures process chamber pressure
Optional:
- Foreline purge/vent protection
- Oil filtration
- Dry pump (optional) with foreline purge/vent protection
- Customer supplied pump
Glovebox Adaptors
The ALD-150LE™ and ALD-150LX™ are now easily integrated with a glove box. The process chamber is strategically positioned in the glovebox to provide the user with easy access to load and unload their substrate.
Kurt J Lesker is able to offer a wide array of standard and custom glovebox suites, from a standard 4 port or 6 port arrangement, to custom lengths and depths.
Glovebox Specifications
- All stainless steel construction of the glovebox
- Specifically designed to integrate with KJL deposition system
- All stainless steel Swagelok valves, fittings and piping
- Modular design (for easy expansion)
- Lexan front window
- Quick release front window
- Electrical feedthrough with a six (6) outlet power strip
- LED light fixtures
- All stainless steel antechamber; size 15" diameter x 24"L with sliding tray
- Shock assisted door lifting mechanisms
- All stainless steel mini antechamber; size 8" diameter x 15"L
- Stainless steel stand with leveling feet and casters
- Stainless steel vacuum gauges
- Adjustable bin storage unit (adjustable shelving)
- Spare KF40 feedthroughs
- Two (2) HEPA gas flow filters; one (1) inlet, one (1) outlet
- Push button evacuation and refill of antechamber
- All stainless steel 24V DC solenoid valve for refill of antechamber
- Automatic electro-pneumatic valve for evacuation of the antechamber (KF40)
- Common vent line
- Stainless steel filter column for the removal of oxygen and moisture including automatic electro-pneumatic valves (KF40 size)
- Fully automatic system with Siemens PLC control unit and 7" color touch screen with built in operating instructions and system diagnostics. Includes:
- O2, H20 and pressure trending
- Maintenance alarms
- Power saver mode for vacuum pump/lights (optional)
- Automatic regeneration process using 3-5% hydrogen gas mixture
- Capable of removing 36 liters of oxygen from inert gas before needing a regeneration
- Capable of removing 1300 grams of moisture from inert gas before needing a regeneration
- Continuous oxygen monitoring
- Continuous moisture monitoring
- Includes 50 cfm circulation blower
- Built for continuous operation
- Manual solvent removal system including stainless steel filter column, 10lbs of activated carbon, manual bypass and isolation valves, evacuation and refill valves, and refill drain port (optional)
- Automatic solvent removal system including stainless steel filter column with 20lbs of molecular sieve, automatic bypass and isolation valves with automatic reactivation of filter material (optional)
- Automatic purge valve-200 L/min flow rate
Glovebox Options
Along with the gloveboxes and system adaptor boxes the following accessories can be supplied:
- Spin Coaters
- Hot Plates
- UV Ozone Curing
- Regenerable Solvent Purification System
- Other accessories upon request
How KJLC's ALD Systems are Powering Next Gen Research
Atomic-Scale Processing Enables Advanced Electronics
Nanotechnology continues its march through the field of electronics, enabling faster and more energy-efficient computer processors, larger computer memory density and increased battery capacity. These ever-shrinking micro and nanodevices require advanced manufacturing methods to produce. Atomic-scale processing refers to a collection of these methods that may be used to deposit and remove material at the smallest scales, a single atomic layer at a time...
READ MOREComparison of Hafnium Dioxide & Zirconium Dioxide Grown by Plasma-Enhanced Atomic Layer Deposition for the Application of Electronic Materials
Dr. Zhigang Xiao, Professor of Electrical Engineering at Alabama A&M University, in collaboration with the ALD group in the Kurt J. Lesker Company recently developed the plasma-enhanced atomic layer deposition process and grow high dielectric constant (K) oxide for the application of electronic materials. They grew nanoscale hafnium dioxide (HfO2) and zirconium dioxide (ZrO2) thin films using remote plasma-enhanced atomic layer deposition (PE-ALD) and fabricated complementary metal-oxide semiconductor (CMOS) integrated circuits using the HfO2 and ZrO2 thin films as the gate oxide. Miniaturization in modern semiconductor industry requires thin film deposition to have atomic level control and the deposited film to be conformal and pinhole-free...
READ MOREEquivalent Oxide Thickness (EOT) Scaling with Hafnium Zirconium Oxide High-K Dielectric from a Surprising Boost in Permittivity
Dr. Kai Ni from the research group of Professor Suman Datta, Stinson Professor of Nanotechnology at the University of Notre Dame, in collaboration with Purdue University and Kurt J. Lesker Company recently developed conformal atomic layer deposition (ALD) based hafnium zirconium oxide thin film processes displaying excellent electrical properties for potential gate oxide complement or replacement in scaled logic and memory technology nodes...
READ MOREMolecular-scale ALD discovery could have industrial-sized impact
(Edmonton) In the world of nano-scale technology, where work is conducted at the atomic level, even the smallest changes can have an enormous impact. And a new discovery by a University of Alberta materials engineering researchers has caught the attention of electronics industry leaders looking for more efficient manufacturing processes...
READ MORE3D Deposition of Conformal Lead-Based Ferroelectric & Piezoelectric Thin Films by Atomic Layer Deposition
Dr. Nicholas A. Strnad (General Technical Services, LLC) in collaboration with the U.S. Army Combat Capabilities Command Army Research Laboratory and the University of Maryland, College Park have recently developed conformal processes for a variety of lead-based electronic materials with outstanding properties using atomic layer deposition (ALD). The findings have been recently published in the Journal of Vacuum Sciences and Techology, A (ref. 1) and the Digital Repository at the University of Maryland (DRUM) (ref. 2)...
READ MOREFilm Sense In Situ Ellipsometer Integration
In fact, the first Film Sense FS-1 in-situ testing was performed on a Kurt J. Lesker ALD150LX reactor in 2014. The FS-1 has since been integrated on multiple Lesker ALD reactors, and has been used to characterize a wide variety of thin films including: Al2O3, TiO2, HfO2, and TiN.
The ALD150LX was designed from the ground up for advanced R&D and features remote plasma as well as in-situellipsometry as a primary means of real time process monitoring and control during ALD. Patented Precursor Focusing Technology™(PFT™) prevents unwanted film deposition on sensitive surfaces inside the reactor including the analytical port windows used for light transmission during in-situ ellipsometry. The layout of the plasma-enhanced ALD (PEALD) reactor makes installation and operation of the compact FS-1 unit simple and easy.
The Film Sense vision "to create easy-to-use and affordable ellipsometers" is especially relevant for in-situ applications. The Film Sense FS-1 realizes this vision by providing the power of Multi-Wavelength Ellipsometry, at an affordable price and compact size that is ideal for in-situ measurements. The FS-1 can provide real time thickness data with exceptional precision, which can be indispensable for the efficient development of new ALD processes. In the plot below, the "steps" in the data are direct observations of the thickness changes on the sample throughout the ALD cycles: the thickness increases and saturates as the precursor is introduced (trimethyl aluminum in this case), and then decreases as the film is oxidized (thermally by H2O in this case).
"Overall performance, affordability and ease of use has made the FS-1 a workhorse for our ALD process as well as equipment development efforts. The next generation FS-1EX provides a combination of higher beam intensity and wider spectral range improving both precision and accuracy. For metallic thin films such as TiN, Pt and Ru, two additional IR wavelengths enhance the ability to monitor film thickness and resistivity in-situ during growth. This enhanced performance helps us to streamline development efforts by effectively understanding the impact of different process conditions on film quality in real-time."
Dr. G. Bruce Rayner, Principal Scientist Atomic Layer Deposition
Kurt J. Lesker Company
Would You Like More Information?
Do you have any questions? Click below to get in contact with one of our many experienced team members.
CONTACT US TODAY